High-throughput discovery and characterization of viral transcriptional effectors in human cells.
Cell Syst
; 14(6): 482-500.e8, 2023 06 21.
Article
en En
| MEDLINE
| ID: mdl-37348463
Viruses encode transcriptional regulatory proteins critical for controlling viral and host gene expression. Given their multifunctional nature and high sequence divergence, it is unclear which viral proteins can affect transcription and which specific sequences contribute to this function. Using a high-throughput assay, we measured the transcriptional regulatory potential of over 60,000 protein tiles across â¼1,500 proteins from 11 coronaviruses and all nine human herpesviruses. We discovered hundreds of transcriptional effector domains, including a conserved repression domain in all coronavirus Spike homologs, dual activation-repression domains in viral interferon regulatory factors (VIRFs), and an activation domain in six herpesvirus homologs of the single-stranded DNA-binding protein that we show is important for viral replication and late gene expression in Kaposi's sarcoma-associated herpesvirus (KSHV). For the effector domains we identified, we investigated their mechanisms via high-throughput sequence and chemical perturbations, pinpointing sequence motifs essential for function. This work massively expands viral protein annotations, serving as a springboard for studying their biological and health implications and providing new candidates for compact gene regulation tools.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Herpesvirus Humano 8
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Cell Syst
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos