Your browser doesn't support javascript.
loading
Determining spin-orbit coupling in graphene by quasiparticle interference imaging.
Sun, Lihuan; Rademaker, Louk; Mauro, Diego; Scarfato, Alessandro; Pásztor, Árpád; Gutiérrez-Lezama, Ignacio; Wang, Zhe; Martinez-Castro, Jose; Morpurgo, Alberto F; Renner, Christoph.
Afiliación
  • Sun L; Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland.
  • Rademaker L; Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland.
  • Mauro D; Department of Theoretical Physics, University of Geneva, 1211, Geneva, Switzerland.
  • Scarfato A; Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland.
  • Pásztor Á; Group of Applied Physics, University of Geneva, 1211, Geneva, Switzerland.
  • Gutiérrez-Lezama I; Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland.
  • Wang Z; Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland.
  • Martinez-Castro J; Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland.
  • Morpurgo AF; Group of Applied Physics, University of Geneva, 1211, Geneva, Switzerland.
  • Renner C; Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland.
Nat Commun ; 14(1): 3771, 2023 Jun 24.
Article en En | MEDLINE | ID: mdl-37355633
Inducing and controlling spin-orbit coupling (SOC) in graphene is key to create topological states of matter, and for the realization of spintronic devices. Placing graphene onto a transition metal dichalcogenide is currently the most successful strategy to achieve this goal, but there is no consensus as to the nature and the magnitude of the induced SOC. Here, we show that the presence of backscattering in graphene-on-WSe2 heterostructures can be used to probe SOC and to determine its strength quantitatively, by imaging quasiparticle interference with a scanning tunneling microscope. A detailed theoretical analysis of the Fourier transform of quasiparticle interference images reveals that the induced SOC consists of a valley-Zeeman (λvZ ≈ 2 meV) and a Rashba (λR ≈ 15 meV) term, one order of magnitude larger than what theory predicts, but in excellent agreement with earlier transport experiments. The validity of our analysis is confirmed by measurements on a 30 degree twist angle heterostructure that exhibits no backscattering, as expected from symmetry considerations. Our results demonstrate a viable strategy to determine SOC quantitatively by imaging quasiparticle interference.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Grafito Tipo de estudio: Diagnostic_studies / Guideline Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Grafito Tipo de estudio: Diagnostic_studies / Guideline Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Suiza
...