Your browser doesn't support javascript.
loading
Polarization-Sensitive Photodetector Based on High Crystallinity Quasi-1D BiSeI Nanowires Synthesized via Chemical Vapor Deposition.
Li, Yubin; Wang, Shiyao; Hong, Jinhua; Zhang, Nannan; Wei, Xin; Zhu, Tao; Zhang, Yao; Xu, Zhuo; Liu, Kaiqiang; Jiang, Man; Xu, Hua.
Afiliación
  • Li Y; Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Wang S; State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
  • Hong J; Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China.
  • Zhang N; Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Wei X; Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Zhu T; State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an, 710069, P. R. China.
  • Zhang Y; State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an, 710069, P. R. China.
  • Xu Z; Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Liu K; Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Jiang M; State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an, 710069, P. R. China.
  • Xu H; Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
Small ; 19(43): e2302623, 2023 Oct.
Article en En | MEDLINE | ID: mdl-37357165
Bismuth chalcohalides (BiSeI and BiSI), a class of superior light absorbers, have recently garnered great attention owing to their promise in constructing next-generation optoelectronic devices. However, to date, the photodetection application of bismuth chalcohalides is still limited due to the challenge in controllable preparation. Herein, the synthesis of large-scale quasi-1D BiSeI nanowires via chemical vapor deposition growth is reported. By precisely tuning the growth temperature and the Se supply, it can effectively control the growth thermodynamics and kinetics of BiSeI crystal, and thus achieve high purity quasi-1D BiSeI nanowires with high crystal quality, uniform diameter, and tunable domain length. Theory and optical characterizations of the quasi-1D BiSeI nanowires reveal an indirect bandgap of 1.57 eV with prominent optical linear dichroism. As a result, the quasi-1D BiSeI nanowire-based photodetector demonstrates a broadband photoresponse (400-800 nm) with high responsivity of 5880 mA W-1 , fast response speed of 0.11 ms and superior air stability. More importantly, the photodetector displays strong polarization sensitivity (anisotropic ratio = 1.77) under the 532 nm light irradiation. This work will provide important guides to the synthesis of other quais-1D metal chalcohalides and shed light on their potential in constructing novel multifunctional optoelectronic devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article
...