Your browser doesn't support javascript.
loading
Using an explicit query and a topic model for scientific article recommendation.
Smail, Boussaadi; Aliane, Hassina; Abdeldjalil, Ouahabi.
Afiliación
  • Smail B; DTISI, Research Center on Scientific and Technical Information Cerist, Algiers, Algeria.
  • Aliane H; Director of Information Sciences R&D Laboratory Head of Natural Language Processing and Digital Content Team Cerist, Algiers, Algeria.
  • Abdeldjalil O; 1.Polytech Tours, Imaging anBrain, University of Tours, INSERM U930 Tours, France.
Educ Inf Technol (Dordr) ; : 1-14, 2023 May 01.
Article en En | MEDLINE | ID: mdl-37361818
The search for relevant scientific articles is a crucial step in any research project. However, the vast number of articles published and available online in digital databases (Google Scholar, Semantic Scholar, etc.) can make this task tedious and negatively impact a researcher's productivity. This article proposes a new method of recommending scientific articles that takes advantage of content-based filtering. The challenge is to target relevant information that meets a researcher's needs, regardless of their research domain. Our recommendation method is based on semantic exploration using latent factors. Our goal is to achieve an optimal topic model that will serve as the basis for the recommendation process. Our experiences confirm our performance expectations, showing relevance and objectivity in the results.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Educ Inf Technol (Dordr) Año: 2023 Tipo del documento: Article País de afiliación: Argelia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Educ Inf Technol (Dordr) Año: 2023 Tipo del documento: Article País de afiliación: Argelia
...