Your browser doesn't support javascript.
loading
Mechanical stiffness and anisotropy measured by MRE during brain development in the minipig.
Wang, Shuaihu; Guertler, Charlotte A; Okamoto, Ruth J; Johnson, Curtis L; McGarry, Matthew D J; Bayly, Philip V.
Afiliación
  • Wang S; Mechanical Engineering and Material Science, Washington University in St. Louis, United States.
  • Guertler CA; Mechanical Engineering and Material Science, Washington University in St. Louis, United States.
  • Okamoto RJ; Mechanical Engineering and Material Science, Washington University in St. Louis, United States.
  • Johnson CL; Biomedical Engineering, University of Delaware, United States.
  • McGarry MDJ; Thayer School of Engineering, Dartmouth College, United States.
  • Bayly PV; Mechanical Engineering and Material Science, Washington University in St. Louis, United States; Biomedical Engineering, Washington University in St. Louis, United States. Electronic address: pvb@wustl.edu.
Neuroimage ; 277: 120234, 2023 08 15.
Article en En | MEDLINE | ID: mdl-37369255
The relationship between brain development and mechanical properties of brain tissue is important, but remains incompletely understood, in part due to the challenges in measuring these properties longitudinally over time. In addition, white matter, which is composed of aligned, myelinated, axonal fibers, may be mechanically anisotropic. Here we use data from magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI) to estimate anisotropic mechanical properties in six female Yucatan minipigs at ages from 3 to 6 months. Fiber direction was estimated from the principal axis of the diffusion tensor in each voxel. Harmonic shear waves in the brain were excited by three different configurations of a jaw actuator and measured using a motion-sensitive MR imaging sequence. Anisotropic mechanical properties are estimated from displacement field and fiber direction data with a finite element- based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. TI-NLI finds spatially resolved TI material properties that minimize the error between measured and simulated displacement fields. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal at all four ages. These maps show that white matter is more dissipative and anisotropic than gray matter, and reveal significant effects of brain development on brain stiffness and structural anisotropy. Changes in brain mechanical properties may be a fundamental biophysical signature of brain development.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diagnóstico por Imagen de Elasticidad / Imagen de Difusión Tensora Tipo de estudio: Diagnostic_studies Límite: Animals Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diagnóstico por Imagen de Elasticidad / Imagen de Difusión Tensora Tipo de estudio: Diagnostic_studies Límite: Animals Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos
...