Your browser doesn't support javascript.
loading
Potential of Near-Infrared Spectroscopy (NIRS) for Efficient Classification Based on Postharvest Storage Time, Cultivar and Maturity in Coconut Water.
Shen, Xiaojun; Wang, Tao; Wei, Jingyi; Li, Xin; Deng, Fuming; Niu, Xiaoqing; Wang, Yuanyuan; Kan, Jintao; Zhang, Weimin; Yun, Yong-Huan; Chen, Fusheng.
Afiliación
  • Shen X; Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
  • Wang T; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  • Wei J; School of Food Science and Technology, Hainan University, Haikou 570228, China.
  • Li X; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  • Deng F; Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
  • Niu X; Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
  • Wang Y; Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
  • Kan J; The Innovation Platform for Academicians of Hainan Province, Wenchang 571339, China.
  • Zhang W; Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
  • Yun YH; Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
  • Chen F; School of Food Science and Technology, Hainan University, Haikou 570228, China.
Foods ; 12(12)2023 Jun 20.
Article en En | MEDLINE | ID: mdl-37372626
Coconut water (CW) is a popular and healthful beverage, and ensuring its quality is crucial for consumer satisfaction. This study aimed to explore the potential of near-infrared spectroscopy (NIRS) and chemometric methods for analyzing CW quality and distinguishing samples based on postharvest storage time, cultivar, and maturity. CW from nuts of Wenye No. 2 and Wenye No. 4 cultivars in China, with varying postharvest storage time and maturities, were subjected to NIRS analysis. Partial least squares regression (PLSR) models were developed to predict reducing sugar and soluble sugar contents, revealing moderate applicability but lacking accuracy, with the residual prediction deviation (RPD) values ranging from 1.54 to 1.83. Models for TSS, pH, and TSS/pH exhibited poor performance with RPD values below 1.4, indicating limited predictability. However, the study achieved a total correct classification rate exceeding 95% through orthogonal partial least squares discriminant analysis (OPLS-DA) models, effectively discriminating CW samples based on postharvest storage time, cultivar, and maturity. These findings highlight the potential of NIRS combined with appropriate chemometric methods as a valuable tool for analyzing CW quality and efficiently distinguishing samples. NIRS and chemometric techniques enhance quality control in coconut water, ensuring consumer satisfaction and product integrity.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Foods Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Foods Año: 2023 Tipo del documento: Article País de afiliación: China
...