Your browser doesn't support javascript.
loading
Global PM2.5 Prediction and Associated Mortality to 2100 under Different Climate Change Scenarios.
Chen, Wanying; Lu, Xingcheng; Yuan, Dehao; Chen, Yiang; Li, Zhenning; Huang, Yeqi; Fung, Tung; Sun, Haochen; Fung, Jimmy C H.
Afiliación
  • Chen W; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China.
  • Lu X; Atmospheric Research Center, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China.
  • Yuan D; Department of Geography and Resource Management, Chinese University of Hong Kong, Hong Kong SAR 999077, China.
  • Chen Y; Department of Computer Science, University of Maryland, College Park, Maryland 20742, United States.
  • Li Z; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China.
  • Huang Y; Atmospheric Research Center, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China.
  • Fung T; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China.
  • Sun H; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China.
  • Fung JCH; Department of Geography and Resource Management, Chinese University of Hong Kong, Hong Kong SAR 999077, China.
Environ Sci Technol ; 57(27): 10039-10052, 2023 07 11.
Article en En | MEDLINE | ID: mdl-37377020
ABSTRACT
Ambient fine particulate matter (PM2.5) has severe adverse health impacts, making it crucial to reduce PM2.5 exposure for public health. Meteorological and emissions factors, which considerably affect the PM2.5 concentrations in the atmosphere, vary substantially under different climate change scenarios. In this work, global PM2.5 concentrations from 2021 to 2100 were generated by combining the deep learning technique, reanalysis data, emission data, and bias-corrected CMIP6 future climate scenario data. Based on the estimated PM2.5 concentrations, the future premature mortality burden was assessed using the Global Exposure Mortality Model. Our results reveal that SSP3-7.0 scenario is associated with the highest PM2.5 exposure, with a global concentration of 34.5 µg/m3 in 2100, while SSP1-2.6 scenario has the lowest exposure, with an estimated of 15.7 µg/m3 in 2100. PM2.5-related deaths for individuals under 75 years will decrease by 16.3 and 10.5% under SSP1-2.6 and SSP5-8.5, respectively, from 2030s to 2090s. However, premature mortality for elderly individuals (>75 years) will increase, causing the contrary trends of improved air quality and increased total PM2.5-related deaths in the four SSPs. Our results emphasize the need for stronger air pollution mitigation measures to offset the future burden posed by population age.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Contaminantes Atmosféricos / Contaminación del Aire Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Aged / Humans Idioma: En Revista: Environ Sci Technol Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Contaminantes Atmosféricos / Contaminación del Aire Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Aged / Humans Idioma: En Revista: Environ Sci Technol Año: 2023 Tipo del documento: Article País de afiliación: China
...