Your browser doesn't support javascript.
loading
Class imbalance should not throw you off balance: Choosing the right classifiers and performance metrics for brain decoding with imbalanced data.
Thölke, Philipp; Mantilla-Ramos, Yorguin-Jose; Abdelhedi, Hamza; Maschke, Charlotte; Dehgan, Arthur; Harel, Yann; Kemtur, Anirudha; Mekki Berrada, Loubna; Sahraoui, Myriam; Young, Tammy; Bellemare Pépin, Antoine; El Khantour, Clara; Landry, Mathieu; Pascarella, Annalisa; Hadid, Vanessa; Combrisson, Etienne; O'Byrne, Jordan; Jerbi, Karim.
Afiliación
  • Thölke P; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada; Institute of Cognitive Science, Osnabrück University, Neuer Graben 29/Schloss, Osnabrück, 49074, Lower Saxony, Germany. Electronic address: philip
  • Mantilla-Ramos YJ; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada; Neuropsychology and Behavior Group (GRUNECO), Faculty of Medicine, Universidad de Antioquia, 53-108, Medellin, Aranjuez, Medellin, 050010, Colombi
  • Abdelhedi H; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada.
  • Maschke C; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada; Integrated Program in Neuroscience, McGill University, 1033 Pine Ave, Montreal, H3A 0G4, Canada.
  • Dehgan A; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada; Institut de Neurosciences de la Timone (INT), CNRS, Aix Marseille University, Marseille, 13005, France.
  • Harel Y; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada.
  • Kemtur A; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada.
  • Mekki Berrada L; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada.
  • Sahraoui M; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada.
  • Young T; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada; Department of Computing Science, University of Alberta, 116 St & 85 Ave, Edmonton, T6G 2R3, AB, Canada.
  • Bellemare Pépin A; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada; Department of Music, Concordia University, 1550 De Maisonneuve Blvd. W., Montreal, H3H 1G8, QC, Canada.
  • El Khantour C; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada.
  • Landry M; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada.
  • Pascarella A; Institute for Applied Mathematics Mauro Picone, National Research Council, Roma, Italy.
  • Hadid V; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada.
  • Combrisson E; Institut de Neurosciences de la Timone (INT), CNRS, Aix Marseille University, Marseille, 13005, France.
  • O'Byrne J; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada.
  • Jerbi K; Cognitive and Computational Neuroscience Laboratory (CoCo Lab), University of Montreal, 2900, boul. Edouard-Montpetit, Montreal, H3T 1J4, Quebec, Canada; Mila (Quebec Machine Learning Institute), 6666 Rue Saint-Urbain, Montreal, H2S 3H1, QC, Canada; UNIQUE Centre (Quebec Neuro-AI Research Centre), 3
Neuroimage ; 277: 120253, 2023 08 15.
Article en En | MEDLINE | ID: mdl-37385392
ABSTRACT
Machine learning (ML) is increasingly used in cognitive, computational and clinical neuroscience. The reliable and efficient application of ML requires a sound understanding of its subtleties and limitations. Training ML models on datasets with imbalanced classes is a particularly common problem, and it can have severe consequences if not adequately addressed. With the neuroscience ML user in mind, this paper provides a didactic assessment of the class imbalance problem and illustrates its impact through systematic manipulation of data imbalance ratios in (i) simulated data and (ii) brain data recorded with electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). Our results illustrate how the widely-used Accuracy (Acc) metric, which measures the overall proportion of successful predictions, yields misleadingly high performances, as class imbalance increases. Because Acc weights the per-class ratios of correct predictions proportionally to class size, it largely disregards the performance on the minority class. A binary classification model that learns to systematically vote for the majority class will yield an artificially high decoding accuracy that directly reflects the imbalance between the two classes, rather than any genuine generalizable ability to discriminate between them. We show that other evaluation metrics such as the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC), and the less common Balanced Accuracy (BAcc) metric - defined as the arithmetic mean between sensitivity and specificity, provide more reliable performance evaluations for imbalanced data. Our findings also highlight the robustness of Random Forest (RF), and the benefits of using stratified cross-validation and hyperprameter optimization to tackle data imbalance. Critically, for neuroscience ML applications that seek to minimize overall classification error, we recommend the routine use of BAcc, which in the specific case of balanced data is equivalent to using standard Acc, and readily extends to multi-class settings. Importantly, we present a list of recommendations for dealing with imbalanced data, as well as open-source code to allow the neuroscience community to replicate and extend our observations and explore alternative approaches to coping with imbalanced data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Benchmarking Tipo de estudio: Guideline / Prognostic_studies Límite: Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Benchmarking Tipo de estudio: Guideline / Prognostic_studies Límite: Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2023 Tipo del documento: Article
...