Your browser doesn't support javascript.
loading
Combination of expert guidelines-based and machine learning-based approaches leads to superior accuracy of automated prediction of clinical effect of copy number variations.
Sládecek, Tomás; Gaziová, Michaela; Kucharík, Marcel; Zatková, Andrea; Pös, Zuzana; Pös, Ondrej; Krampl, Werner; Tomková, Erika; Hýblová, Michaela; Minárik, Gabriel; Radvánszky, Ján; Budis, Jaroslav; Szemes, Tomás.
Afiliación
  • Sládecek T; Geneton Ltd., Bratislava, Slovakia.
  • Gaziová M; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
  • Kucharík M; Comenius University Science Park, Bratislava, Slovakia.
  • Zatková A; Geneton Ltd., Bratislava, Slovakia.
  • Pös Z; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
  • Pös O; Geneton Ltd., Bratislava, Slovakia.
  • Krampl W; Comenius University Science Park, Bratislava, Slovakia.
  • Tomková E; Geneton Ltd., Bratislava, Slovakia.
  • Hýblová M; Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
  • Minárik G; Geneton Ltd., Bratislava, Slovakia.
  • Radvánszky J; Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
  • Budis J; Geneton Ltd., Bratislava, Slovakia.
  • Szemes T; Comenius University Science Park, Bratislava, Slovakia.
Sci Rep ; 13(1): 10531, 2023 06 29.
Article en En | MEDLINE | ID: mdl-37386017
Clinical interpretation of copy number variants (CNVs) is a complex process that requires skilled clinical professionals. General recommendations have been recently released to guide the CNV interpretation based on predefined criteria to uniform the decision process. Several semiautomatic computational methods have been proposed to recommend appropriate choices, relieving clinicians of tedious searching in vast genomic databases. We have developed and evaluated such a tool called MarCNV and tested it on CNV records collected from the ClinVar database. Alternatively, the emerging machine learning-based tools, such as the recently published ISV (Interpretation of Structural Variants), showed promising ways of even fully automated predictions using broader characterization of affected genomic elements. Such tools utilize features additional to ACMG criteria, thus providing supporting evidence and the potential to improve CNV classification. Since both approaches contribute to evaluation of CNVs clinical impact, we propose a combined solution in the form of a decision support tool based on automated ACMG guidelines (MarCNV) supplemented by a machine learning-based pathogenicity prediction (ISV) for the classification of CNVs. We provide evidence that such a combined approach is able to reduce the number of uncertain classifications and reveal potentially incorrect classifications using automated guidelines. CNV interpretation using MarCNV, ISV, and combined approach is available for non-commercial use at https://predict.genovisio.com/ .
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suplementos Dietéticos / Variaciones en el Número de Copia de ADN Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: Eslovaquia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suplementos Dietéticos / Variaciones en el Número de Copia de ADN Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: Eslovaquia
...