Your browser doesn't support javascript.
loading
Designing main-group catalysts for low-temperature methane combustion by ozone.
Yasumura, Shunsaku; Saita, Kenichiro; Miyakage, Takumi; Nagai, Ken; Kon, Kenichi; Toyao, Takashi; Maeno, Zen; Taketsugu, Tetsuya; Shimizu, Ken-Ichi.
Afiliación
  • Yasumura S; Institute for Catalysis, Hokkaido University, N-21 W-10, Sapporo, Hokkaido, 001-0021, Japan.
  • Saita K; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
  • Miyakage T; Institute for Catalysis, Hokkaido University, N-21 W-10, Sapporo, Hokkaido, 001-0021, Japan.
  • Nagai K; Institute for Catalysis, Hokkaido University, N-21 W-10, Sapporo, Hokkaido, 001-0021, Japan.
  • Kon K; Institute for Catalysis, Hokkaido University, N-21 W-10, Sapporo, Hokkaido, 001-0021, Japan.
  • Toyao T; Institute for Catalysis, Hokkaido University, N-21 W-10, Sapporo, Hokkaido, 001-0021, Japan.
  • Maeno Z; School of Advanced Engineering, Kogakuin University, Tokyo, 192-0015, Japan.
  • Taketsugu T; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
  • Shimizu KI; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
Nat Commun ; 14(1): 3926, 2023 Jul 03.
Article en En | MEDLINE | ID: mdl-37400448
The catalytic combustion of methane at a low temperature is becoming increasingly key to controlling unburned CH4 emissions from natural gas vehicles and power plants, although the low activity of benchmark platinum-group-metal catalysts hinders its broad application. Based on automated reaction route mapping, we explore main-group elements catalysts containing Si and Al for low-temperature CH4 combustion with ozone. Computational screening of the active site predicts that strong Brønsted acid sites are promising for methane combustion. We experimentally demonstrate that catalysts containing strong Bronsted acid sites exhibit improved CH4 conversion at 250 °C, correlating with the theoretical predictions. The main-group catalyst (proton-type beta zeolite) delivered a reaction rate that is 442 times higher than that of a benchmark catalyst (5 wt% Pd-loaded Al2O3) at 190 °C and exhibits higher tolerance to steam and SO2. Our strategy demonstrates the rational design of earth-abundant catalysts based on automated reaction route mapping.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Japón
...