Your browser doesn't support javascript.
loading
Formulating co-loaded nanoliposomes with gallic acid and quercetin for enhanced cancer therapy.
Al-Samydai, Ali; Al Qaraleh, Moath; Al Azzam, Khaldun M; Mayyas, Amal; Nsairat, Hamdi; Abu Hajleh, Maha N; Al-Halaseh, Lidia K; Al-Karablieh, Nehaya; Akour, Amal; Alshaik, Fatima; Alshaer, Walhan.
Afiliación
  • Al-Samydai A; Pharmacological and Diagnostic Research Centre (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan.
  • Al Qaraleh M; Pharmacological and Diagnostic Research Centre (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan.
  • Al Azzam KM; Pharmacological and Diagnostic Research Centre (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan.
  • Mayyas A; Faculty of Health Sciences, Department of Pharmacy, American University of Madaba, 11821, Madaba, Jordan.
  • Nsairat H; Pharmacological and Diagnostic Research Centre (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan.
  • Abu Hajleh MN; Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328, Amman, Jordan.
  • Al-Halaseh LK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, 61710, Al-Karak, Jordan.
  • Al-Karablieh N; Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, 11942, Jordan.
  • Akour A; Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, 11942, Jordan.
  • Alshaik F; Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates.
  • Alshaer W; Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Jordan.
Heliyon ; 9(6): e17267, 2023 Jun.
Article en En | MEDLINE | ID: mdl-37408902
ABSTRACT
Cancer is considered one of the top global causes of death. Natural products have been used in oncology medicine either in crude form or by utilizing isolated secondary metabolites. Biologically active phytomolecules such as gallic acid and quercetin have confirmed antioxidant, anti-bacterial, and neoplastic properties. There is an agreement that microorganisms could mediate oncogenesis or alter the immune system. This research project aims to develop a novel formulation of co-loaded gallic acid and quercetin into nanoliposomes and investigate the efficacy of the free and combined agents against multiple cancerous cell lines and bacterial strains. Thin-film hydration technique was adopted to synthesize the nanocarriers. Particle characteristics were measured using a Zetasizer. The morphology of nanoliposomes was examined by scanning electron microscopy, Encapsulation efficiency and drug loading were evaluated using High-Performance Liquid Chromatography. Cytotoxicity was determined against Breast Cancer Cells MCF-7, Human Carcinoma Cells HT-29, and A549 Lung Cancer Cells. The antibacterial activities were evaluated against Acinetobacter baumannii, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Staphylococcus aureus. Therapeutic formulas were categorized into groups free gallic acid, free quercetin, free-mix, and their nano-counterparts. Findings revealed that drug loading capacity was 0.204 for the mix formula compared to 0.092 and 0.68 for free gallic acid and quercetin, respectively. Regarding the Zeta potential, the mix formula showed more amphiphilic charge than the free quercetin and free gallic acid formulas (P-values 0.003 and 0.002 receptively). On the contrary, no significant difference in polydispersity indices was reported. Lung cancerous cells were the most affected by the treatments. The best estimated IC50 values were observed in breast and lung cancer lines for the nano-gallic acid and co-loaded particles. The nano-quercetin formula exhibited the least cytotoxicity with an IC50 value of ≥200 µg/mL in both breast (MCF-7) and colorectal adenocarcinoma cell lines (HT-29) with no activity against the lung. A remarkable improvement in the efficacy of quercetin was measured after mixing it with gallic acid against the breast and lungs. The tested therapeutic agents exhibited antimicrobial activity against gram-positive bacteria. Nano-liposomes can either enhance or reduce the cytotoxicity activity of active compounds depending on the physical and chemical properties of drug-loaded and type of cancer cells.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2023 Tipo del documento: Article País de afiliación: Jordania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2023 Tipo del documento: Article País de afiliación: Jordania
...