Your browser doesn't support javascript.
loading
Two types of GLR channels cooperate differently in light and dark growth of Arabidopsis seedlings.
Krzeszowiec, Weronika; Lewandowska, Aleksandra; Lyczakowski, Jan Jakub; Bebko, Kateryna; Scholz, Sandra S; Gabrys, Halina.
Afiliación
  • Krzeszowiec W; Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, Kraków, 30-387, Poland. weronika.krzeszowiec@uj.edu.pl.
  • Lewandowska A; Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, Kraków, 30-387, Poland.
  • Lyczakowski JJ; Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, Kraków, 30-387, Poland.
  • Bebko K; Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, Kraków, 30-387, Poland.
  • Scholz SS; Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
  • Gabrys H; Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, Kraków, 30-387, Poland.
BMC Plant Biol ; 23(1): 358, 2023 Jul 14.
Article en En | MEDLINE | ID: mdl-37442951
ABSTRACT

BACKGROUND:

GLutamate Receptor-like (GLR) channels are multimeric, ionotropic, ligand-gated plant transmembrane receptors. They are homologous to mammalian glutamate receptors, iGLuRs, which are critical to neuronal function. GLRs have been reported several times to play a role in photomorphogenesis. However, to date, no study has looked at the mechanism of their involvement in this process. Here we focused on examining the impact of GLRs on the regulation of early seedling growth in blue light, red light, and in the dark.

RESULTS:

Wild type and six photoreceptor mutant seedlings were grown on media supplemented with known iGLuR/GLR channel antagonists MK-801, which non-competitively blocks NMDA channels in mammalian cells, and CNQX, known for competitive blocking of AMPA channels in mammalian cells. The lengths of hypocotyls and roots were measured in seedlings of phyA, phyB, phot1, phot2, cry1, and cry2 mutants after 7 days of in vitro culture. Changes in growth parameters, both in light and in darkness upon application of chemical antagonists, show that both types of GLR channels, NMDA-like and AMPA-like, are involved in the regulation of seedling growth irrespective of light conditions. Analysis of seedling growth of photoreceptor mutants indicates that the channels are influenced by signaling from phot1, phot2, and cry1. To extend our analysis, we also evaluated the elicitation of a calcium wave, which is likely to be partially driven by GLRs, in Arabidopsis seedlings. The changes in cellobiose-induced calcium waves observed after applying GLR inhibitors suggest that both types of channels likely cooperate in shaping Arabidopsis seedling growth and development.

CONCLUSIONS:

Our work provides the first experimental evidence that two types of GLR channels function in plants NMDA-like and AMPA-like. We also demonstrate that the channels are involved in seedling growth and development, at least partially through modulation of calcium signaling, but they are unlikely to play a major role in photomorphogenesis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Arabidopsis / Proteínas de Arabidopsis Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2023 Tipo del documento: Article País de afiliación: Polonia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Arabidopsis / Proteínas de Arabidopsis Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2023 Tipo del documento: Article País de afiliación: Polonia
...