Your browser doesn't support javascript.
loading
Oxoglaucine Suppresses Hepatic Fibrosis by Inhibiting TGFß-Induced Smad2 Phosphorylation and ROS Generation.
Azamov, Bakhovuddin; Lee, Kwang-Min; Hur, Jin; Muradillaeva, Shakhnoza; Shim, Wan-Seog; Lee, Chanhee; Song, Parkyong.
Afiliación
  • Azamov B; Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
  • Lee KM; Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea.
  • Hur J; Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
  • Muradillaeva S; Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
  • Shim WS; Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
  • Lee C; Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
  • Song P; Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
Molecules ; 28(13)2023 Jun 24.
Article en En | MEDLINE | ID: mdl-37446633
ABSTRACT
Hepatic fibrosis is the first stage of liver disease, and can progress to a chronic status, such as cirrhosis or hepatocellular carcinoma. Excessive production of extracellular matrix (ECM) components plays an important role in the development of fibrosis. Mechanistically, transforming growth factor beta (TGFß)-induced phosphorylation of Smad is thought to be a key signaling pathway in the development of liver fibrosis. Although the natural isoquinoline alkaloid oxoglaucine (1,2,9,10-tetramethoxy-7H-dibenzo(de,g)quinolin-7-one) exerts numerous beneficial effects, including anti-cancer, anti-inflammatory, and anti-osteoarthritic effects in diverse cell types, the effects of oxoglaucine on liver fibrosis and fibrogenic gene expression have not been fully elucidated. The aim of this study is to evaluate the signaling pathway and antifibrotic activity of isoquinoline alkaloid oxoglaucine in TFGß-induced hepatic fibrosis in vitro. Using Hepa1c1c7 cells and primary hepatocytes, we demonstrated that oxoglaucine treatment resulted in inhibition of the expression of fibrosis markers such as collagen, fibronectin, and alpha-SMA. Subsequent experiments showed that oxoglaucine suppressed TGFß-induced phosphorylation of Smad2 and reactive oxygen species (ROS) generation, without altering cell proliferation. We further determined that the increase in Smad7 by oxoglaucine treatment is responsible for the inhibition of Smad2 phosphorylation and the anti-fibrogenic effects. These findings indicate that oxoglaucine plays a crucial role in suppression of fibrosis in hepatocytes, thereby making it a potential drug candidate for treatment of liver fibrosis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Factor de Crecimiento Transformador beta / Cirrosis Hepática Límite: Humans Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Factor de Crecimiento Transformador beta / Cirrosis Hepática Límite: Humans Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article
...