Your browser doesn't support javascript.
loading
Using multiple indicators to predict the risk of surgical site infection after ORIF of tibia fractures: a machine learning based study.
Ying, Hui; Guo, Bo-Wen; Wu, Hai-Jian; Zhu, Rong-Ping; Liu, Wen-Cai; Zhong, Hong-Fa.
Afiliación
  • Ying H; Department of Emergency Trauma Surgery, Ganzhou People's Hospital, Ganzhou, China.
  • Guo BW; Department of Emergency Trauma Surgery, Ganzhou People's Hospital, Ganzhou, China.
  • Wu HJ; Department of Emergency Trauma Surgery, Ganzhou People's Hospital, Ganzhou, China.
  • Zhu RP; Department of Emergency Trauma Surgery, Ganzhou People's Hospital, Ganzhou, China.
  • Liu WC; Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
  • Zhong HF; Department of Emergency Trauma Surgery, Ganzhou People's Hospital, Ganzhou, China.
Front Cell Infect Microbiol ; 13: 1206393, 2023.
Article en En | MEDLINE | ID: mdl-37448774
Objective: Surgical site infection (SSI) are a serious complication that can occur after open reduction and internal fixation (ORIF) of tibial fractures, leading to severe consequences. This study aimed to develop a machine learning (ML)-based predictive model to screen high-risk patients of SSI following ORIF of tibial fractures, thereby aiding in personalized prevention and treatment. Methods: Patients who underwent ORIF of tibial fractures between January 2018 and October 2022 at the Department of Emergency Trauma Surgery at Ganzhou People's Hospital were retrospectively included. The demographic characteristics, surgery-related variables and laboratory indicators of patients were collected in the inpatient electronic medical records. Ten different machine learning algorithms were employed to develop the prediction model, and the performance of the models was evaluated to select the best predictive model. Ten-fold cross validation for the training set and ROC curves for the test set were used to evaluate model performance. The decision curve and calibration curve analysis were used to verify the clinical value of the model, and the relative importance of features in the model was analyzed. Results: A total of 351 patients who underwent ORIF of tibia fractures were included in this study, among whom 51 (14.53%) had SSI and 300 (85.47%) did not. Of the patients with SSI, 15 cases were of deep infection, and 36 cases were of superficial infection. Given the initial parameters, the ET, LR and RF are the top three algorithms with excellent performance. Ten-fold cross-validation on the training set and ROC curves on the test set revealed that the ET model had the best performance, with AUC values of 0.853 and 0.866, respectively. The decision curve analysis and calibration curves also showed that the ET model had the best clinical utility. Finally, the performance of the ET model was further tested, and the relative importance of features in the model was analyzed. Conclusion: In this study, we constructed a multivariate prediction model for SSI after ORIF of tibial fracture through ML, and the strength of this study was the use of multiple indicators to establish an infection prediction model, which can better reflect the real situation of patients, and the model show great clinical prediction performance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_sistemas_informacao_saude Asunto principal: Infección de la Herida Quirúrgica / Fracturas de la Tibia Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Front Cell Infect Microbiol Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_sistemas_informacao_saude Asunto principal: Infección de la Herida Quirúrgica / Fracturas de la Tibia Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Front Cell Infect Microbiol Año: 2023 Tipo del documento: Article País de afiliación: China
...