Your browser doesn't support javascript.
loading
Chylomicrons Regulate Lacteal Permeability and Intestinal Lipid Absorption.
Zarkada, Georgia; Chen, Xun; Zhou, Xuetong; Lange, Martin; Zeng, Lei; Lv, Wenyu; Zhang, Xuan; Li, Yunhua; Zhou, Weibin; Liu, Keli; Chen, Dongying; Ricard, Nicolas; Liao, James; Kim, Young-Bum; Benedito, Rui; Claesson-Welsh, Lena; Alitalo, Kari; Simons, Michael; Ju, Rong; Li, Xuri; Eichmann, Anne; Zhang, Feng.
Afiliación
  • Zarkada G; Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (G.Z., M.L., D.C., N.R., M.S., A.E.).
  • Chen X; Now with Department of Physiology and Neurobiology, University of Connecticut, Storrs (G.Z.).
  • Zhou X; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China (X.C., X. Zhou, L.Z., W.L., X. Zhang, Y.L., W.Z., K.L., R.J., X.L., F.Z.).
  • Lange M; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China (X.C., X. Zhou, L.Z., W.L., X. Zhang, Y.L., W.Z., K.L., R.J., X.L., F.Z.).
  • Zeng L; Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (G.Z., M.L., D.C., N.R., M.S., A.E.).
  • Lv W; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China (X.C., X. Zhou, L.Z., W.L., X. Zhang, Y.L., W.Z., K.L., R.J., X.L., F.Z.).
  • Zhang X; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China (X.C., X. Zhou, L.Z., W.L., X. Zhang, Y.L., W.Z., K.L., R.J., X.L., F.Z.).
  • Li Y; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China (X.C., X. Zhou, L.Z., W.L., X. Zhang, Y.L., W.Z., K.L., R.J., X.L., F.Z.).
  • Zhou W; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China (X.C., X. Zhou, L.Z., W.L., X. Zhang, Y.L., W.Z., K.L., R.J., X.L., F.Z.).
  • Liu K; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China (X.C., X. Zhou, L.Z., W.L., X. Zhang, Y.L., W.Z., K.L., R.J., X.L., F.Z.).
  • Chen D; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China (X.C., X. Zhou, L.Z., W.L., X. Zhang, Y.L., W.Z., K.L., R.J., X.L., F.Z.).
  • Ricard N; Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (G.Z., M.L., D.C., N.R., M.S., A.E.).
  • Liao J; Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (G.Z., M.L., D.C., N.R., M.S., A.E.).
  • Kim YB; Now with Laboratoire Biosanté U1292, Université Grenoble Alpes, INSERM, CEA, Grenoble, France (N.R.).
  • Benedito R; University of Arizona, College of Medicine, Banner University Medical Center, Tucson (J.K.L.).
  • Claesson-Welsh L; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (Y.-B.K.).
  • Alitalo K; Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.B.).
  • Simons M; Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Sweden (L.C.-W.).
  • Ju R; Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum, University of Helsinki, Finland (K.A.).
  • Li X; Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (G.Z., M.L., D.C., N.R., M.S., A.E.).
  • Eichmann A; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China (X.C., X. Zhou, L.Z., W.L., X. Zhang, Y.L., W.Z., K.L., R.J., X.L., F.Z.).
  • Zhang F; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China (X.C., X. Zhou, L.Z., W.L., X. Zhang, Y.L., W.Z., K.L., R.J., X.L., F.Z.).
Circ Res ; 133(4): 333-349, 2023 08 04.
Article en En | MEDLINE | ID: mdl-37462027
ABSTRACT

BACKGROUND:

Lymphatic vessels are responsible for tissue drainage, and their malfunction is associated with chronic diseases. Lymph uptake occurs via specialized open cell-cell junctions between capillary lymphatic endothelial cells (LECs), whereas closed junctions in collecting LECs prevent lymph leakage. LEC junctions are known to dynamically remodel in development and disease, but how lymphatic permeability is regulated remains poorly understood.

METHODS:

We used various genetically engineered mouse models in combination with cellular, biochemical, and molecular biology approaches to elucidate the signaling pathways regulating junction morphology and function in lymphatic capillaries.

RESULTS:

By studying the permeability of intestinal lacteal capillaries to lipoprotein particles known as chylomicrons, we show that ROCK (Rho-associated kinase)-dependent cytoskeletal contractility is a fundamental mechanism of LEC permeability regulation. We show that chylomicron-derived lipids trigger neonatal lacteal junction opening via ROCK-dependent contraction of junction-anchored stress fibers. LEC-specific ROCK deletion abolished junction opening and plasma lipid uptake. Chylomicrons additionally inhibited VEGF (vascular endothelial growth factor)-A signaling. We show that VEGF-A antagonizes LEC junction opening via VEGFR (VEGF receptor) 2 and VEGFR3-dependent PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B) activation of the small GTPase RAC1 (Rac family small GTPase 1), thereby restricting RhoA (Ras homolog family member A)/ROCK-mediated cytoskeleton contraction.

CONCLUSIONS:

Our results reveal that antagonistic inputs into ROCK-dependent cytoskeleton contractions regulate the interconversion of lymphatic junctions in the intestine and in other tissues, providing a tunable mechanism to control the lymphatic barrier.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Unión al GTP Monoméricas / Vasos Linfáticos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Circ Res Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Unión al GTP Monoméricas / Vasos Linfáticos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Circ Res Año: 2023 Tipo del documento: Article
...