Your browser doesn't support javascript.
loading
Spin-mediated shear oscillators in a van der Waals antiferromagnet.
Zong, Alfred; Zhang, Qi; Zhou, Faran; Su, Yifan; Hwangbo, Kyle; Shen, Xiaozhe; Jiang, Qianni; Liu, Haihua; Gage, Thomas E; Walko, Donald A; Kozina, Michael E; Luo, Duan; Reid, Alexander H; Yang, Jie; Park, Suji; Lapidus, Saul H; Chu, Jiun-Haw; Arslan, Ilke; Wang, Xijie; Xiao, Di; Xu, Xiaodong; Gedik, Nuh; Wen, Haidan.
Afiliación
  • Zong A; Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
  • Zhang Q; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Zhou F; Department of Physics, University of Washington, Seattle, WA, USA.
  • Su Y; Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
  • Hwangbo K; Department of Physics, Nanjing University, Nanjing, China.
  • Shen X; Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
  • Jiang Q; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Liu H; Department of Physics, University of Washington, Seattle, WA, USA.
  • Gage TE; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Walko DA; Department of Physics, University of Washington, Seattle, WA, USA.
  • Kozina ME; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
  • Luo D; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
  • Reid AH; Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
  • Yang J; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Park S; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Lapidus SH; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Chu JH; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Arslan I; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Wang X; Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
  • Xiao D; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.
  • Xu X; Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
  • Gedik N; Department of Physics, University of Washington, Seattle, WA, USA.
  • Wen H; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
Nature ; 620(7976): 988-993, 2023 Aug.
Article en En | MEDLINE | ID: mdl-37532936
Understanding how microscopic spin configuration gives rise to exotic properties at the macroscopic length scale has long been pursued in magnetic materials1-5. One seminal example is the Einstein-de Haas effect in ferromagnets1,6,7, in which angular momentum of spins can be converted into mechanical rotation of an entire object. However, for antiferromagnets without net magnetic moment, how spin ordering couples to macroscopic movement remains elusive. Here we observed a seesaw-like rotation of reciprocal lattice peaks of an antiferromagnetic nanolayer film, whose gigahertz structural resonance exhibits more than an order-of-magnitude amplification after cooling below the Néel temperature. Using a suite of ultrafast diffraction and microscopy techniques, we directly visualize this spin-driven rotation in reciprocal space at the nanoscale. This motion corresponds to interlayer shear in real space, in which individual micro-patches of the film behave as coherent oscillators that are phase-locked and shear along the same in-plane axis. Using time-resolved optical polarimetry, we further show that the enhanced mechanical response strongly correlates with ultrafast demagnetization, which releases elastic energy stored in local strain gradients to drive the oscillators. Our work not only offers the first microscopic view of spin-mediated mechanical motion of an antiferromagnet but it also identifies a new route towards realizing high-frequency resonators8,9 up to the millimetre band, so the capability of controlling magnetic states on the ultrafast timescale10-13 can be readily transferred to engineering the mechanical properties of nanodevices.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos
...