Analyzing Acceptor-like State Distribution of Solution-Processed Indium-Zinc-Oxide Semiconductor Depending on the In Concentration.
Nanomaterials (Basel)
; 13(15)2023 Jul 26.
Article
en En
| MEDLINE
| ID: mdl-37570484
Understanding the density of state (DOS) distribution in solution-processed indium-zinc-oxide (IZO) thin-film transistors (TFTs) is crucial for addressing electrical instability. This paper presents quantitative calculations of the acceptor-like state distribution of solution-processed IZO TFTs using thermal energy analysis. To extract the acceptor-like state distribution, the electrical characteristics of IZO TFTs with various In molarity ratios were analyzed with respect to temperature. An Arrhenius plot was used to determine electrical parameters such as the activation energy, flat band energy, and flat band voltage. Two calculation methods, the simplified charge approximation and the Meyer-Neldel (MN) rule-based carrier-surface potential field-effect analysis, were proposed to estimate the acceptor-like state distribution. The simplified charge approximation established the modeling of acceptor-like states using the charge-voltage relationship. The MN rule-based field-effect analysis validated the DOS distribution through the carrier-surface potential relationship. In addition, this study introduces practical and effective approaches for determining the DOS distribution of solution-processed IZO semiconductors based on the In molarity ratio. The profiles of the acceptor-like state distribution provide insights into the electrical behavior depending on the doping concentration of the solution-processed IZO semiconductors.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Nanomaterials (Basel)
Año:
2023
Tipo del documento:
Article