Your browser doesn't support javascript.
loading
Epi-microRNA mediated metabolic reprogramming ensures affinity maturation.
bioRxiv ; 2023 Oct 31.
Article en En | MEDLINE | ID: mdl-37609190
ABSTRACT
To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centres (GCs). Among those, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by relying on oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment. Here, we show that microRNA (miR)-155 mediates metabolic reprogramming during positive selection to protect high-affinity clones. Transcriptome examination and mass spectrometry analysis revealed that miR-155 regulates H3K36me2 levels by directly repressing hypoxia-induced histone lysine demethylase, Kdm2a. This is indispensable for enhancing OXPHOS through optimizing the expression of vital nuclear mitochondrial genes under hypoxia. The miR-155-Kdm2a interaction is crucial to prevent excessive production of reactive oxygen species and apoptosis. Thus, miR-155-mediated epigenetic regulation promotes mitochondrial fitness in high-affinity clones, ensuring their expansion and consequently affinity maturation.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article
...