Improving algal bloom detection using spectroscopic analysis and machine learning: A case study in a large artificial reservoir, South Korea.
Sci Total Environ
; 901: 166467, 2023 Nov 25.
Article
en En
| MEDLINE
| ID: mdl-37611716
The prediction of algal blooms using traditional water quality indicators is expensive, labor-intensive, and time-consuming, making it challenging to meet the critical requirement of timely monitoring for prompt management. Using optical measures for forecasting algal blooms is a feasible and useful method to overcome these problems. This study explores the potential application of optical measures to enhance algal bloom prediction in terms of prediction accuracy and workload reduction, aided by machine learning (ML) models. Compared to absorption-derived parameters, commonly used fluorescence indices such as the fluorescence index (FI), humification index (HIX), biological index (BIX), and protein-like component improved the prediction accuracy. However, the prediction accuracy was decreased when all optical indices were considered for computation due to increased noise and uncertainty in the models. With the exception of chemical oxygen demand (COD), this study successfully replaced biochemical oxygen demand (BOD), dissolved organic carbon (DOC), and nutrients with selected fluorescence indices, demonstrating relatively analogous performance in either training or testing data, with consistent and good coefficient of determination (R2) values of approximately 0.85 and 0.74, respectively. Among all models considered, ensemble learning models consistently outperformed conventional regression models and artificial neural networks (ANNs). However, there was a trade-off between accuracy and computation efficiency among the ensemble learning models (i.e., Stacking and XGBoost) for algal bloom prediction. Our study offers a glimpse of the potential application of spectroscopic measures to improve accuracy and efficiency in algal bloom prediction, but further work should be carried out in other water bodies to further validate our proposed hypothesis.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Idioma:
En
Revista:
Sci Total Environ
Año:
2023
Tipo del documento:
Article
País de afiliación:
Corea del Sur