Your browser doesn't support javascript.
loading
Label-free tumor cells classification using deep learning and high-content imaging.
Piansaddhayanon, Chawan; Koracharkornradt, Chonnuttida; Laosaengpha, Napat; Tao, Qingyi; Ingrungruanglert, Praewphan; Israsena, Nipan; Chuangsuwanich, Ekapol; Sriswasdi, Sira.
Afiliación
  • Piansaddhayanon C; Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
  • Koracharkornradt C; Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
  • Laosaengpha N; Chula Intelligent and Complex Systems, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
  • Tao Q; Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
  • Ingrungruanglert P; Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
  • Israsena N; Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
  • Chuangsuwanich E; NVIDIA AI Technology Center, Singapore, Singapore.
  • Sriswasdi S; Center of Excellence for Stem Cell and Cell Therapy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
Sci Data ; 10(1): 570, 2023 08 26.
Article en En | MEDLINE | ID: mdl-37634014
Many studies have shown that cellular morphology can be used to distinguish spiked-in tumor cells in blood sample background. However, most validation experiments included only homogeneous cell lines and inadequately captured the broad morphological heterogeneity of cancer cells. Furthermore, normal, non-blood cells could be erroneously classified as cancer because their morphology differ from blood cells. Here, we constructed a dataset of microscopic images of organoid-derived cancer and normal cell with diverse morphology and developed a proof-of-concept deep learning model that can distinguish cancer cells from normal cells within an unlabeled microscopy image. In total, more than 75,000 organoid-drived cells from 3 cholangiocarcinoma patients were collected. The model achieved an area under the receiver operating characteristics curve (AUROC) of 0.78 and can generalize to cell images from an unseen patient. These resources serve as a foundation for an automated, robust platform for circulating tumor cell detection.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Línea Celular Tumoral / Neoplasias Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Sci Data Año: 2023 Tipo del documento: Article País de afiliación: Tailandia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Línea Celular Tumoral / Neoplasias Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Sci Data Año: 2023 Tipo del documento: Article País de afiliación: Tailandia
...