Your browser doesn't support javascript.
loading
Survival and process outgrowth of human iPSC-derived cells expressing Purkinje cell markers in a mouse model for spinocerebellar degenerative disease.
Kamei, Takamasa; Tamada, Atsushi; Kimura, Toshiya; Kakizuka, Akira; Asai, Akio; Muguruma, Keiko.
Afiliación
  • Kamei T; Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; Department of Neurosurgery, Kansai Medical University, Osaka, Japan.
  • Tamada A; Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.
  • Kimura T; Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.
  • Kakizuka A; Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
  • Asai A; Department of Neurosurgery, Kansai Medical University, Osaka, Japan.
  • Muguruma K; Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan. Electronic address: muguruke@hira
Exp Neurol ; 369: 114511, 2023 11.
Article en En | MEDLINE | ID: mdl-37634697
ABSTRACT
Purkinje cells are the sole output neurons of the cerebellar cortex and play central roles in the integration of cerebellum-related motor coordination and memory. The loss or dysfunction of Purkinje cells due to cerebellar atrophy leads to severe ataxia. Here we used in vivo transplantation to examine the function of human iPS cell-derived cerebellar progenitors in adult transgenic mice in which Purkinje-specific cell death occurs due to cytotoxicity of polyglutamines. Transplantation using cerebellar organoids (42-48 days in culture), which are rich in neural progenitors, showed a viability of >50% 4 weeks after transplantation. STEM121+ grafted cells extended their processes toward the deep cerebellar nuclei, superior cerebellar peduncle, and vestibulocerebellar nuclei. The transplanted cells were mostly located in the white matter, and they were not found in the Purkinje cell layer. MAP2-positive fibers seen in the molecular layer of cerebellar cortex received VGluT2 inputs from climbing fibers. Transplanted neural progenitors overgrew in the host cerebellum but were suppressed by pretreatment with the γ-secretase inhibitor DAPT. Hyperproliferation was also suppressed by transplantation with more differentiated organoids (86 days in culture) or KIRREL2-positive cells purified by FACS sorting. Transplanted cells expressed Purkinje cell markers, GABA, CALB1 and L7, though they did not show fan-shaped morphology. We attempted to improve neuronal integration of stem cell-derived cerebellar progenitors by transplantation into the adult mouse, but this was not successfully achieved. Our findings in the present study contribute to regenerative medical application for cerebellar degeneration and provide new insights into cerebellar development in future.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células de Purkinje / Células Madre Pluripotentes Inducidas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Exp Neurol Año: 2023 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células de Purkinje / Células Madre Pluripotentes Inducidas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Exp Neurol Año: 2023 Tipo del documento: Article País de afiliación: Japón
...