Your browser doesn't support javascript.
loading
Conserved residues at the family and subfamily levels determine enzyme activity and substrate binding in glycoside hydrolase family 13.
Xi, Shixia; Ban, Xiaofeng; Kong, Haocun; Li, Caiming; Gu, Zhengbiao; Li, Zhaofeng.
Afiliación
  • Xi S; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.
  • Ban X; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan Univers
  • Kong H; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.
  • Li C; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan Univers
  • Gu Z; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan Univers
  • Li Z; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan Univers
Int J Biol Macromol ; 253(Pt 4): 126980, 2023 Dec 31.
Article en En | MEDLINE | ID: mdl-37729992
Site-directed mutagenesis is a valuable strategy for modifying enzymes, but the lack of understanding of conserved residues regulating glycosidase function hinders enzyme design. We analyzed 1662 enzyme sequences to identify conserved amino acids in maltohexaose-forming amylase at both family and subfamily levels. Several conserved residues at the family level (G37, P45, R52, Y57, D101, V103, H106, G230, R232, D234, E264, H330, D331, and G360) were found, mutations of which resulted in reduced enzyme activity or inactivation. At the subfamily level, several conserved residues (L65, E67, F68, D111, E114, R126, R147, F154, W156, F161, G163, D165, W218H, V342, W345, and F346) were identified, which primarily facilitate substrate binding in the enzyme's active site, as shown by molecular dynamics and kinetic assays. Our findings provide critical insights into conserved residues essential for catalysis and can inform targeted enzyme design in protein engineering.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aminoácidos / Glicósido Hidrolasas Tipo de estudio: Prognostic_studies Idioma: En Revista: Int J Biol Macromol Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aminoácidos / Glicósido Hidrolasas Tipo de estudio: Prognostic_studies Idioma: En Revista: Int J Biol Macromol Año: 2023 Tipo del documento: Article
...