Morphology Control for Efficient Nonfused Acceptor-Based Organic Photovoltaic Cells.
Small
; 20(5): e2305631, 2024 Feb.
Article
en En
| MEDLINE
| ID: mdl-37752745
Non-fused electron acceptors have huge advantages in fabricating low-cost organic photovoltaic (OPV) cells. However, morphology control is a challenge as non-fused CâC single bonds bring more molecular conformations. Here, by selecting two typical polymer donors, PBDB-TF and PBQx-TF, the blend morphologies and its impacts on the power conversion efficiencies (PCEs) of non-fused acceptor-based OPV cells are studied. A selenium-containing non-fused acceptor named ASe-5 is designed. The results suggest that PBQx-TF has a lower miscibility with ASe-5 when compared with PBDB-TF. Additionally, the polymer networks may form earlier in the PBQx-TF:ASe-5 blend film due to stronger preaggregation performance, leading to a more obvious phase separation. The PBQx-TF:ASe-5 blend film shows faster charge transfer and suppressed charge recombination. As a result, the PBQx-TF:ASe-5-based device records a good PCE of 14.7% with a higher fill factor (FF) of 0.744, while the PBDB-TF:ASe-5-based device only obtains a moderate PCE of 12.3% with a relatively low FF of 0.662. The work demonstrates that the selection of donors plays a crucial role in controlling the blend morphology and thus improving the PCEs of non-fused acceptor-based OPV cells.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Small
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
China