Your browser doesn't support javascript.
loading
Directional Connectivity-based Segmentation of Medical Images.
Yang, Ziyun; Farsiu, Sina.
Afiliación
  • Yang Z; Duke University, Durham, NC, United States.
  • Farsiu S; Duke University, Durham, NC, United States.
Article en En | MEDLINE | ID: mdl-37790907
Anatomical consistency in biomarker segmentation is crucial for many medical image analysis tasks. A promising paradigm for achieving anatomically consistent segmentation via deep networks is incorporating pixel connectivity, a basic concept in digital topology, to model inter-pixel relationships. However, previous works on connectivity modeling have ignored the rich channel-wise directional information in the latent space. In this work, we demonstrate that effective disentanglement of directional sub-space from the shared latent space can significantly enhance the feature representation in the connectivity-based network. To this end, we propose a directional connectivity modeling scheme for segmentation that decouples, tracks, and utilizes the directional information across the network. Experiments on various public medical image segmentation benchmarks show the effectiveness of our model as compared to the state-of-the-art methods. Code is available at https://github.com/Zyun-Y/DconnNet.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos
...