Your browser doesn't support javascript.
loading
IS26 mediated blaCTX-M-65 amplification in Escherichia coli increase the antibiotic resistance to cephalosporin in vivo.
Wang, Yinping; He, Jintao; Sun, Long; Jiang, Yan; Hu, Lihua; Leptihn, Sebastian; Zhu, Pengfei; Fu, Xiaoting; Yu, Yunsong; Hua, Xiaoting.
Afiliación
  • Wang Y; Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run
  • He J; Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run
  • Sun L; Department of Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou Maternity and Child Health Care Hospital, Hangzhou, China.
  • Jiang Y; Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run
  • Hu L; Department of Critical Care Medicine, Hangzhou General Hospital of Chinese People's Armed Police, Hangzhou, People's Republic of China.
  • Leptihn S; Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; University of Edinburgh Medical School, Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.
  • Zhu P; Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Qingdao Single-Cell Biot
  • Fu X; Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Qingdao Single-Cell Biot
  • Yu Y; Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run
  • Hua X; Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run
J Glob Antimicrob Resist ; 35: 202-209, 2023 12.
Article en En | MEDLINE | ID: mdl-37802302
ABSTRACT

OBJECTIVES:

To characterize two Escherichia coli strains isolated from a patient pre- and post-treatment, using ß-lactams and ß-lactam/ß-lactamase inhibitor combinations (BLBLIs).

METHODS:

A combination of antibiotic susceptibility testing (AST) with whole genome sequencing using Illumina and Oxford Nanopore platforms. Long-read sequencing and reverse transcription-quantitative PCR were performed to determine the copy numbers and expression levels of antibiotic resistance genes (ARGs), respectively. Effect on fitness costs were assessed by growth rate determination.

RESULTS:

The strain obtained from the patient after the antibiotic treatment (XH989) exhibited higher resistance to cefepime, BLBLIs and quinolones compared with the pre-treatment strain (XH987). Sequencing revealed IS26-mediated duplications of a IS26-fosA3-blaCTX-M-65 plasmid-embedded element in strain XH989. Long-read sequencing (7.4 G data volume) indicated a variation in copy numbers of blaCTX-M-65 within one single culture of strain XH989. Increased copy numbers of the IS26-fosA3-blaCTX-M-65 element were correlated with higher CTX-M-65 expression level and did not impose fitness costs, while facilitating faster growth under high antibiotic concentrations.

CONCLUSION:

Our study is an example from the clinic how BLBLIs and ß-lactams exposure in vivo possibly promoted the amplification of an IS26-multiple drug resistance (MDR) region. The observation of a copy number variation seen with the blaCTX-M-65 gene in the plasmid of the post-treatment strain expands our knowledge of insertion sequence dynamics and evolution during treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_neglected_diseases / 3_zoonosis Asunto principal: Cefalosporinas / Escherichia coli Límite: Humans Idioma: En Revista: J Glob Antimicrob Resist Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_neglected_diseases / 3_zoonosis Asunto principal: Cefalosporinas / Escherichia coli Límite: Humans Idioma: En Revista: J Glob Antimicrob Resist Año: 2023 Tipo del documento: Article
...