Your browser doesn't support javascript.
loading
Convolutional network denoising for acceleration of multi-shot diffusion MRI.
Alus, Or; El Homsi, Maria; Golia Pernicka, Jennifer S; Rodriguez, Lee; Mazaheri, Yousef; Kee, Youngwook; Petkovska, Iva; Otazo, Ricardo.
Afiliación
  • Alus O; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • El Homsi M; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Golia Pernicka JS; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Rodriguez L; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Mazaheri Y; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Kee Y; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Petkovska I; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Otazo R; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address: otazotoj@mskcc.org.
Magn Reson Imaging ; 105: 108-113, 2024 Jan.
Article en En | MEDLINE | ID: mdl-37820978
ABSTRACT
Multi-shot echo planar imaging is a promising technique to reduce geometric distortions and increase spatial resolution in diffusion-weighted MRI (DWI), at the expense of increased scan time. Moreover, performing DWI in the body requires multiple repetitions to obtain sufficient signal-to-noise ratio, which further increases the scan time. This work proposes to reduce the number of repetitions and perform denoising of high b-value images using a convolutional network denoising trained on single-shot DWI to accelerate the acquisition of multi-shot DWI. Convolutional network denoising is demonstrated to accelerate the acquisition of 2-shot DWI by a factor of 4 compared to the clinical standard on patients with rectal cancer. Image quality was evaluated using qualitative scores from expert body radiologists between accelerated and non-accelerated acquisition. Additionally, the effect of convolutional network denoising on each image quality score was analyzed using a Wilcoxon signed-rank test. Convolutional network denoising would enable to increase the number of shots without increasing scan time for significant geometric artifact reduction and spatial resolution increase.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen Eco-Planar / Imagen de Difusión por Resonancia Magnética Tipo de estudio: Qualitative_research Límite: Humans Idioma: En Revista: Magn Reson Imaging Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen Eco-Planar / Imagen de Difusión por Resonancia Magnética Tipo de estudio: Qualitative_research Límite: Humans Idioma: En Revista: Magn Reson Imaging Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...