Your browser doesn't support javascript.
loading
Significant Reductions in Secondary Aerosols after the Three-Year Action Plan in Beijing Summer.
Li, Yan; Lei, Lu; Sun, Jiaxing; Gao, Yueqi; Wang, Peng; Wang, Siyu; Zhang, Zhaolei; Du, Aodong; Li, Zhijie; Wang, Zifa; Kim, Jin Young; Kim, Hwajin; Zhang, Hongliang; Sun, Yele.
Afiliación
  • Li Y; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
  • Lei L; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Sun J; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
  • Gao Y; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Wang P; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
  • Wang S; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhang Z; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
  • Du A; Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China.
  • Li Z; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
  • Wang Z; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
  • Kim JY; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
  • Kim H; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhang H; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
  • Sun Y; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
Environ Sci Technol ; 57(42): 15945-15955, 2023 10 24.
Article en En | MEDLINE | ID: mdl-37823561
Air quality in China has continuously improved during the Three-Year Action Plan (2018-2020); however, the changes in aerosol composition, properties, and sources in Beijing summer remain poorly understood. Here, we conducted real-time measurements of aerosol composition in five summers from 2018 to 2022 along with WRF-Community Multiscale Air Quality simulations to characterize the changes in aerosol chemistry and the roles of meteorology and emission reductions. Largely different from winter, secondary inorganic aerosol and photochemical-related secondary organic aerosol (SOA) showed significant decreases by 55-67% in summer, and the most decreases occurred in 2021. Comparatively, the decreases in the primary aerosol species and gaseous precursors were comparably small. While decreased atmospheric oxidation capacity as indicated by ozone changes played an important role in changing SOA composition, the large decrease in aerosol liquid water and small increase in particle acidity were critical for nitrate changes by decreasing gas-particle partitioning substantially (∼28%). Analysis of meteorological influences demonstrated clear and similar transitions in aerosol composition and formation mechanisms at a relative humidity of 50-60% in five summers. Model simulations revealed that emission controls played the decisive role in reducing sulfate, primary OA, and anthropogenic SOA during the Three-Year Action Plan, while meteorology affected more nitrate and biogenic SOA.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Contaminantes Atmosféricos País/Región como asunto: Asia Idioma: En Revista: Environ Sci Technol Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Contaminantes Atmosféricos País/Región como asunto: Asia Idioma: En Revista: Environ Sci Technol Año: 2023 Tipo del documento: Article País de afiliación: China
...