Your browser doesn't support javascript.
loading
Exploiting the Marcus inverted region for first-row transition metal-based photoredox catalysis.
Chan, Amy Y; Ghosh, Atanu; Yarranton, Jonathan T; Twilton, Jack; Jin, Jian; Arias-Rotondo, Daniela M; Sakai, Holt A; McCusker, James K; MacMillan, David W C.
Afiliación
  • Chan AY; Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA.
  • Ghosh A; Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
  • Yarranton JT; Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
  • Twilton J; Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA.
  • Jin J; Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA.
  • Arias-Rotondo DM; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
  • Sakai HA; Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA.
  • McCusker JK; Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA.
  • MacMillan DWC; Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
Science ; 382(6667): 191-197, 2023 Oct 13.
Article en En | MEDLINE | ID: mdl-37824651
ABSTRACT
Second- and third-row transition metal complexes are widely employed in photocatalysis, whereas earth-abundant first-row transition metals have found only limited use because of the prohibitively fast decay of their excited states. We report an unforeseen reactivity mode for productive photocatalysis that uses cobalt polypyridyl complexes as photocatalysts by exploiting Marcus inverted region behavior that couples increases in excited-state energies with increased excited-state lifetimes. These cobalt (III) complexes can engage in bimolecular reactivity by virtue of their strong redox potentials and sufficiently long excited-state lifetimes, catalyzing oxidative C(sp2)-N coupling of aryl amides with challenging sterically hindered aryl boronic acids. More generally, the results imply that chromophores can be designed to increase excited-state lifetimes while simultaneously increasing excited-state energies, providing a pathway for the use of relatively abundant metals as photoredox catalysts.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Science Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Science Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos
...