Your browser doesn't support javascript.
loading
Use of magnetic powder to effectively improve the denitrification employing the activated sludge fermentation liquid as carbon source.
Zhang, Fengyuan; Chen, Ying; Zhao, Feng; Yuan, Peiyao; Lu, Mingyi; Qin, Kang; Qin, Fan; Fu, Shanfei; Guo, Rongbo; Feng, Quan.
Afiliación
  • Zhang F; Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New E
  • Chen Y; Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China.
  • Zhao F; Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China.
  • Yuan P; Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New E
  • Lu M; Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New E
  • Qin K; College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
  • Qin F; Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New E
  • Fu S; Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China.
  • Guo R; Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China. Electronic addre
  • Feng Q; Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China. Electronic addre
J Environ Manage ; 348: 119049, 2023 Dec 15.
Article en En | MEDLINE | ID: mdl-37837762
ABSTRACT
Nitrogen removal is often limited in municipal wastewater treatment due to the lack of sufficient carbon source. Utilizing volatile fatty acids (VFAs) from waste activated sludge (WAS) fermentation broth as a carbon source is an ideal alternative to reduce the cost for wastewater treatment plants (WWTPs) and improve denitrification efficiency simultaneously. In this study, an anaerobic system was applied for simultaneous denitrification and WAS fermentation and the addition of magnetic microparticles (MMP) were confirmed to enhance both denitrification and WAS fermentation. Firstly, the addition of MMP increased the nitrate reduction rate by over 25.36% and improve the production of N2. Additionally, the equivalent chemical oxygen demand (COD) of the detected VFAs increased by 7.06%-14.53%, suggesting that MMP promoted the WAS fermentation. The electron transfer efficiency of denitrifies was accelerated by MMP via electron-transporting system (ETS) activity and cyclic voltammetry (CV) experiments, which might result in the promotional denitrification and WAS fermentation performance. Furthermore, the high-throughput sequencing displayed that, MMP enriched key microbes capable of degrading the complex organics (Chloroflexi, Synergistota and Spirochaetota) as well as the typical denitrifies (Bacteroidetes_vadinHA17 and Denitratisoma). Therefore, this study provides a novel strategy to realize simultaneous WAS utilization and denitrification for WWTPs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_enfermedades_transmissibles / 2_quimicos_contaminacion Asunto principal: Aguas del Alcantarillado / Desnitrificación Idioma: En Revista: J Environ Manage Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_enfermedades_transmissibles / 2_quimicos_contaminacion Asunto principal: Aguas del Alcantarillado / Desnitrificación Idioma: En Revista: J Environ Manage Año: 2023 Tipo del documento: Article
...