Your browser doesn't support javascript.
loading
Comparative molecular transformations of dissolved organic matter induced by chlorination and ammonia/chlorine oxidation process.
Ye, Bei; Song, Zhi-Min; Wu, De-Xiu; Liang, Jun-Kun; Wang, Wen-Long; Hu, Wei; Yu, Yang.
Afiliación
  • Ye B; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Key Labora
  • Song ZM; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Pingshan D
  • Wu DX; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Key Labora
  • Liang JK; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Department
  • Wang WL; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Key Labora
  • Hu W; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Key Labora
  • Yu Y; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Key Labora
Environ Pollut ; 339: 122771, 2023 Dec 15.
Article en En | MEDLINE | ID: mdl-37858698
The ammonia/chlorine oxidation process can greatly degrade PPCPs in water. However, its effect on molecular transformations of natural organic matter (NOM) and effluent organic matter (EfOM) are still poorly understood. In this study, molecular transformations of NOM and EfOM occurring during ammonia/chlorine were explored and compared with those occurred during chlorination, using spectroscopy and mass spectrometry. Phenolic and highly unsaturated aliphatic compounds together with aliphatic compounds were found to be predominant in both NOM and EfOM samples, all of which were significantly degraded after two processes. The ammonia/chlorine process led to greater decreases in the molecular weights of such components but lower reductions in aromaticity. Compared with chlorination, ammonia/chlorine was found to be more likely to degrade compounds while remaining fluorophores or chromophores. The CH(N)O(S) precursors were found to be similar for both processes but their products were quite different. The CH(N)O(S) precursors that only found in ammonia/chlorine had higher molecular weights and greater degrees of oxidation but lower degrees of saturation. In contrast, the unique CH(N)O(S) products that only found in ammonia/chlorine exhibited lower molecular weights and lower degrees of oxidation degrees together with higher degrees of saturation. Lower total abundance of chlorinated byproducts was found by ammonia/chlorine compared with chlorination, although the former process provided a richer diversity. In all water samples, chlorinated byproducts were mainly generated by substitution reactions during ammonia/chlorine and chlorination. Overall, the findings of this study could provide new insights into the transformations of NOM and EfOM induced by ammonia/chlorine and chlorination.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Cloro / Purificación del Agua Idioma: En Revista: Environ Pollut Asunto de la revista: SAUDE AMBIENTAL Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Cloro / Purificación del Agua Idioma: En Revista: Environ Pollut Asunto de la revista: SAUDE AMBIENTAL Año: 2023 Tipo del documento: Article
...