Your browser doesn't support javascript.
loading
Approaches to Account for Colon Absorption in Physiologically Based Biopharmaceutics Modeling of Extended-Release Drug Products.
Jadhav, Harshad; Augustijns, Patrick; Tannergren, Christer.
Afiliación
  • Jadhav H; Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, S-431 83 Mölndal, Sweden.
  • Augustijns P; Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, ON2 Herestraat 49, 3000 Leuven, Belgium.
  • Tannergren C; Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, ON2 Herestraat 49, 3000 Leuven, Belgium.
Mol Pharm ; 20(12): 6272-6288, 2023 Dec 04.
Article en En | MEDLINE | ID: mdl-37902586
The rate and extent of colon absorption are important determinants of the in vivo performance of extended-release (ER) drug products. The ability to appropriately predict this at different stages of development using mechanistic physiologically based biopharmaceutic modeling (PBBM) is highly desirable. This investigation aimed to evaluate the prediction performance of three different approaches to account for colon absorption in predictions of the in vivo performance of ER drug product variants with different in vitro release profiles. This was done by mechanistic predictions of the absorption and plasma exposure of the ER drug products using GastroPlus and GI-Sim for five drugs with different degrees of colon absorption limitations in humans. Colon absorption was accounted for in the predictions using three different approaches: (1) by an a priori approach using the default colon models, (2) by fitting the colon absorption scaling factors to the observed plasma concentration-time profiles after direct administration to the colon in humans, or (3) from the ER drug product variant with the slowest in vitro release profile. The prediction performance was evaluated based on the percentage prediction error and the average absolute prediction error (AAPE). Two levels of acceptance criteria corresponding to highly accurate (AAPE ≤ 20%) and accurate (AAPE 20-50%) predictions were defined prior to the evaluation. For the a priori approach, the relative bioavailability (Frel), AUC0-t, and Cmax of the ER drug product variants for the low to medium colon absorption limitation risk drugs was accurately predicted with an AAPE range of 11-53 and 8-59% for GastroPlus and GI-Sim, respectively. However, the prediction performance was poor for the high colon absorption limitation risk drugs. Moreover, accounting for the human regional colon absorption data in the models did not improve the prediction performance. In contrast, using the colon absorption scaling factors derived from the slowest ER variant significantly improved the prediction performance regardless of colon absorption limitation, with a majority of the predictions meeting the high accuracy criteria. For the slowest ER approach, the AAPE ranges were 5-24 and 5-32% for GastroPlus and GI-Sim, respectively, excluding the low permeability drug. In conclusion, the a priori PBBM can be used during candidate selection and early product design to predict the in vivo performance of ER drug products for low to medium colon absorption limitation risk drugs with sufficient accuracy. The results also indicate a limited value in performing human regional absorption studies in which the drug is administered to the colon as a bolus to support PBBM development for ER drug products. Instead, by performing an early streamlined relative bioavailability study with the slowest relevant ER in vitro release profile, a highly accurate PBBM suitable for ER predictions for commercial and regulatory applications can be developed, except for permeability-limited drugs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_medicamentos_vacinas_tecnologias Asunto principal: Biofarmacia / Absorción Intestinal Límite: Humans Idioma: En Revista: Mol Pharm Asunto de la revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_medicamentos_vacinas_tecnologias Asunto principal: Biofarmacia / Absorción Intestinal Límite: Humans Idioma: En Revista: Mol Pharm Asunto de la revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Suecia
...