Your browser doesn't support javascript.
loading
One-dimensional H2V3O8 nanorods and two-dimensional lamellar MXene composites as efficient cathode materials for aqueous rechargeable zinc ion batteries.
Duan, Wenyuan; Chen, Shenghua; Li, Yanlin; Chen, Shaoquan; Zhao, Yuzhen.
Afiliación
  • Duan W; Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University Xi'an 710123 China zyz19870226@163.com.
  • Chen S; School of Materials Science and Engineering, Xi'an University of Architecture & Technology Xi'an 710055 China liyanlin@xauat.edu.cn.
  • Li Y; School of Materials Science and Engineering, Xi'an University of Architecture & Technology Xi'an 710055 China liyanlin@xauat.edu.cn.
  • Chen S; Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University Xi'an 710123 China zyz19870226@163.com.
  • Zhao Y; Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University Xi'an 710123 China zyz19870226@163.com.
RSC Adv ; 13(45): 32023-32027, 2023 Oct 26.
Article en En | MEDLINE | ID: mdl-37920199
The energy crisis is a the worldwide problem which needs humans to solve immediately. To solve this problem, it is necessary to develop energy storage batteries. It is worth mentioning the aqueous rechargeable zinc ion batteries (ARZBs) which have some advantages, such as low cost, good safety and no need for an organic electrolyte as in the traditional lithium-ion batteries. However, it is still a challenge to find suitable and reliable electrode materials. In this work, as-prepared H2V3O8 nanorods and MXene composites are used as cathode materials in ARZBs which were designed well using a hydrothermal method after optimizing the reaction time. The results showed that H2V3O8/MXene ARZBs could provide a good transport path for zinc ions, which were based on special 1D H2V3O8 nanorods and 2D multi-layered MXene materials, which exhibited an outstanding initial specific discharge capacity of 373 mA h g-1 at 200 mA g-1, good rate capability and a long lifecycle with only 15.8% capacity decay at 500 mA g-1 after 5000 cycles. The H2V3O8/MXene composites with a good electrochemical performance bring insight into their promising applications for energy storage batteries. They provided enhanced rate performance and excellent cycling stability, which was ascribed to the multi-step and multi-mode zinc ion insertion/extraction process. This was confirmed by the use of the 1D/2D integrated structure of the H2V3O8/MXene composites, which was conductive to zinc ion diffusion.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: RSC Adv Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: RSC Adv Año: 2023 Tipo del documento: Article
...