Your browser doesn't support javascript.
loading
Task-adaptive physical reservoir computing.
Lee, Oscar; Wei, Tianyi; Stenning, Kilian D; Gartside, Jack C; Prestwood, Dan; Seki, Shinichiro; Aqeel, Aisha; Karube, Kosuke; Kanazawa, Naoya; Taguchi, Yasujiro; Back, Christian; Tokura, Yoshinori; Branford, Will R; Kurebayashi, Hidekazu.
Afiliación
  • Lee O; London Centre for Nanotechnology, University College London, London, UK. s.lee.14@ucl.ac.uk.
  • Wei T; London Centre for Nanotechnology, University College London, London, UK.
  • Stenning KD; Blackett Laboratory, Imperial College London, London, UK.
  • Gartside JC; Blackett Laboratory, Imperial College London, London, UK.
  • Prestwood D; London Centre for Nanotechnology, University College London, London, UK.
  • Seki S; Department of Applied Physics, University of Tokyo, Tokyo, Japan.
  • Aqeel A; Physik-Department, Technische Universität München, Garching, Germany.
  • Karube K; Munich Center for Quantum Science and Technology (MCQST), Munich, Germany.
  • Kanazawa N; RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.
  • Taguchi Y; Department of Applied Physics, University of Tokyo, Tokyo, Japan.
  • Back C; RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.
  • Tokura Y; Physik-Department, Technische Universität München, Garching, Germany.
  • Branford WR; Department of Applied Physics, University of Tokyo, Tokyo, Japan.
  • Kurebayashi H; RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.
Nat Mater ; 23(1): 79-87, 2024 Jan.
Article en En | MEDLINE | ID: mdl-37957266
ABSTRACT
Reservoir computing is a neuromorphic architecture that may offer viable solutions to the growing energy costs of machine learning. In software-based machine learning, computing performance can be readily reconfigured to suit different computational tasks by tuning hyperparameters. This critical functionality is missing in 'physical' reservoir computing schemes that exploit nonlinear and history-dependent responses of physical systems for data processing. Here we overcome this issue with a 'task-adaptive' approach to physical reservoir computing. By leveraging a thermodynamical phase space to reconfigure key reservoir properties, we optimize computational performance across a diverse task set. We use the spin-wave spectra of the chiral magnet Cu2OSeO3 that hosts skyrmion, conical and helical magnetic phases, providing on-demand access to different computational reservoir responses. The task-adaptive approach is applicable to a wide variety of physical systems, which we show in other chiral magnets via above (and near) room-temperature demonstrations in Co8.5Zn8.5Mn3 (and FeGe).

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido
...