An Interpretable Radiomics Model Based on Two-Dimensional Shear Wave Elastography for Predicting Symptomatic Post-Hepatectomy Liver Failure in Patients with Hepatocellular Carcinoma.
Cancers (Basel)
; 15(21)2023 Nov 06.
Article
en En
| MEDLINE
| ID: mdl-37958476
OBJECTIVE: The aim of this study was to develop and validate an interpretable radiomics model based on two-dimensional shear wave elastography (2D-SWE) for symptomatic post-hepatectomy liver failure (PHLF) prediction in patients undergoing liver resection for hepatocellular carcinoma (HCC). METHODS: A total of 345 consecutive patients were enrolled. A five-fold cross-validation was performed during training, and the models were evaluated in the independent test cohort. A multi-patch radiomics model was established based on the 2D-SWE images for predicting symptomatic PHLF. Clinical features were incorporated into the models to train the clinical-radiomics model. The radiomics model and the clinical-radiomics model were compared with the clinical model comprising clinical variables and other clinical predictive indices, including the model for end-stage liver disease (MELD) score and albumin-bilirubin (ALBI) score. Shapley Additive exPlanations (SHAP) was used for post hoc interpretability of the radiomics model. RESULTS: The clinical-radiomics model achieved an AUC of 0.867 (95% CI 0.787-0.947) in the five-fold cross-validation, and this score was higher than that of the clinical model (AUC: 0.809; 95% CI: 0.715-0.902) and the radiomics model (AUC: 0.746; 95% CI: 0.681-0.811). The clinical-radiomics model showed an AUC of 0.822 in the test cohort, higher than that of the clinical model (AUC: 0.684, p = 0.007), radiomics model (AUC: 0.784, p = 0.415), MELD score (AUC: 0.529, p < 0.001), and ALBI score (AUC: 0.644, p = 0.016). The SHAP analysis showed that the first-order radiomics features, including first-order maximum 64 × 64, first-order 90th percentile 64 × 64, and first-order 10th percentile 32 × 32, were the most important features for PHLF prediction. CONCLUSION: An interpretable clinical-radiomics model based on 2D-SWE and clinical variables can help in predicting symptomatic PHLF in HCC.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Cancers (Basel)
Año:
2023
Tipo del documento:
Article
País de afiliación:
China