Your browser doesn't support javascript.
loading
Light-Responsive Supramolecular Liquid-Crystalline Metallacycle for Orthogonal Multimode Photopatterning.
Hu, Yi-Xiong; Hao, Xingtian; Wang, Dan; Zhang, Zi-Cheng; Sun, Haitao; Xu, Xing-Dong; Xie, Xiaolin; Shi, Xueliang; Peng, Haiyan; Yang, Hai-Bo; Xu, Lin.
Afiliación
  • Hu YX; State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongsha
  • Hao X; State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
  • Wang D; State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
  • Zhang ZC; State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongsha
  • Sun H; State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, P. R. China.
  • Xu XD; Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China.
  • Xie X; State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
  • Shi X; State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongsha
  • Peng H; State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
  • Yang HB; State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongsha
  • Xu L; State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongsha
Angew Chem Int Ed Engl ; 63(4): e202315061, 2024 Jan 22.
Article en En | MEDLINE | ID: mdl-37966368
ABSTRACT
The development of multimode photopatterning systems based on supramolecular coordination complexes (SCCs) is considerably attractive in supramolecular chemistry and materials science, because SCCs can serve as promising platforms for the incorporation of multiple functional building blocks. Herein, we report a light-responsive liquid-crystalline metallacycle that is constructed by coordination-driven self-assembly. By exploiting its fascinating liquid crystal features, bright emission properties, and facile photocyclization capability, a unique system with spatially-controlled fluorescence-resonance energy transfer (FRET) is built through the introduction of a photochromic spiropyran derivative, which led to the realization of the first example of a liquid-crystalline metallacycle for orthogonal photopatterning in three-modes, namely holography, fluorescence, and photochromism.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article
...