Your browser doesn't support javascript.
loading
Benchmarking MicrobIEM - a user-friendly tool for decontamination of microbiome sequencing data.
Hülpüsch, Claudia; Rauer, Luise; Nussbaumer, Thomas; Schwierzeck, Vera; Bhattacharyya, Madhumita; Erhart, Veronika; Traidl-Hoffmann, Claudia; Reiger, Matthias; Neumann, Avidan U.
Afiliación
  • Hülpüsch C; Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
  • Rauer L; Chair of Environmental Medicine, Technical University of Munich, Munich, Germany.
  • Nussbaumer T; CK CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland.
  • Schwierzeck V; Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
  • Bhattacharyya M; Chair of Environmental Medicine, Technical University of Munich, Munich, Germany.
  • Erhart V; Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany.
  • Traidl-Hoffmann C; Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany.
  • Reiger M; Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany.
  • Neumann AU; Institute of Hygiene, University Hospital Muenster, Muenster, Germany.
BMC Biol ; 21(1): 269, 2023 11 23.
Article en En | MEDLINE | ID: mdl-37996810
BACKGROUND: Microbiome analysis is becoming a standard component in many scientific studies, but also requires extensive quality control of the 16S rRNA gene sequencing data prior to analysis. In particular, when investigating low-biomass microbial environments such as human skin, contaminants distort the true microbiome sample composition and need to be removed bioinformatically. We introduce MicrobIEM, a novel tool to bioinformatically remove contaminants using negative controls. RESULTS: We benchmarked MicrobIEM against five established decontamination approaches in four 16S rRNA amplicon sequencing datasets: three serially diluted mock communities (108-103 cells, 0.4-80% contamination) with even or staggered taxon compositions and a skin microbiome dataset. Results depended strongly on user-selected algorithm parameters. Overall, sample-based algorithms separated mock and contaminant sequences best in the even mock, whereas control-based algorithms performed better in the two staggered mocks, particularly in low-biomass samples (≤ 106 cells). We show that a correct decontamination benchmarking requires realistic staggered mock communities and unbiased evaluation measures such as Youden's index. In the skin dataset, the Decontam prevalence filter and MicrobIEM's ratio filter effectively reduced common contaminants while keeping skin-associated genera. CONCLUSIONS: MicrobIEM's ratio filter for decontamination performs better or as good as established bioinformatic decontamination tools. In contrast to established tools, MicrobIEM additionally provides interactive plots and supports selecting appropriate filtering parameters via a user-friendly graphical user interface. Therefore, MicrobIEM is the first quality control tool for microbiome experts without coding experience.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / Microbiota Límite: Humans Idioma: En Revista: BMC Biol Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / Microbiota Límite: Humans Idioma: En Revista: BMC Biol Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Alemania
...