Your browser doesn't support javascript.
loading
Incorporating Russo-Ukrainian war in Brent crude oil price forecasting: A comparative analysis of ARIMA, TARMA and ENNReg models.
Mati, Sagiru; Radulescu, Magdalena; Saqib, Najia; Samour, Ahmed; Ismael, Goran Yousif; Aliyu, Nazifi.
Afiliación
  • Mati S; Operational Research Center in Healthcare, Near East University, North Cyprus, 99138, Turkey.
  • Radulescu M; Department of Economics, Yusuf Maitama Sule University, PMB 3099, Nigeria.
  • Saqib N; Department of Finance, Accounting and Economics, University of Pitesti, 110040 Pitesti, Romania.
  • Samour A; Institute for Doctoral and Post-Doctoral Studies, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania.
  • Ismael GY; Department of Finance, College of Business Administration, Prince Sultan University, Riyadh, Saudi Arabia.
  • Aliyu N; Department of Accounting, Dhofar University, Salalah, Sultanate of Oman.
Heliyon ; 9(11): e21439, 2023 Nov.
Article en En | MEDLINE | ID: mdl-38027671
This article investigates the performance of three models - Autoregressive Integrated Moving Average (ARIMA), Threshold Autoregressive Moving Average (TARMA) and Evidential Neural Network for Regression (ENNReg) - in forecasting the Brent crude oil price, a crucial economic variable with a significant impact on the global economy. With the increasing complexity of the price dynamics due to geopolitical factors such as the Russo-Ukrainian war, we examine the impact of incorporating information on the war on the forecasting accuracy of these models. Our analysis shows that incorporating the impact of the war can significantly improve the forecasting accuracy of the models, and the ENNReg model with the inclusion of the dummy variable outperforms the other models during the war period. Including the war variable has enhanced the forecasting accuracy of the ENNReg model by 0.11%. These results carry significant implications regarding policymakers, investors, and researchers interested in developing accurate forecasting models in the presence of geopolitical events such as the Russo-Ukrainian war. The results can be used by the governments of oil-exporting countries for budget policies.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_financiamento_saude Idioma: En Revista: Heliyon Año: 2023 Tipo del documento: Article País de afiliación: Turquía

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_financiamento_saude Idioma: En Revista: Heliyon Año: 2023 Tipo del documento: Article País de afiliación: Turquía
...