Your browser doesn't support javascript.
loading
Improving the genetic potential of okra (Abelmoschus esculentus L.) germplasm to tolerate salinity stress.
Haq, Ikram Ul; Azam, Noman; Ashraf, Muhammad; Javaid, Muhammad Mansoor; Murtaza, Ghulam; Ahmed, Zeeshan; Riaz, Muhammad Asam; Iqbal, Rashid; Habib Ur Rahman, Muhammed; Alwahibi, Mona S; Elshikh, Mohamed S; Aslam, Muhammad Usman; Arslan, Muhammad.
Afiliación
  • Haq IU; Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan.
  • Azam N; Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan.
  • Ashraf M; Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan.
  • Javaid MM; Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan.
  • Murtaza G; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China.
  • Ahmed Z; Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000, Punjab, Pakistan. zeeshanagronomist@yahoo.com.
  • Riaz MA; College of Life Science, Shenyang Normal University, Shenyang, 110034, China. zeeshanagronomist@yahoo.com.
  • Iqbal R; Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, 41000, Punjab, Pakistan.
  • Habib Ur Rahman M; Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan. rashid.iqbal@iub.edu.pk.
  • Alwahibi MS; Institute of Crop Science and Resource Conservation (INRES), Faculty of Agriculture, University of Bonn, Bonn, Germany.
  • Elshikh MS; Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology, MNS-University of Agricultural, Multan, Pakistan.
  • Aslam MU; Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
  • Arslan M; Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
Sci Rep ; 13(1): 21504, 2023 12 06.
Article en En | MEDLINE | ID: mdl-38057336
Okra (Abelmoschus esculentus L.) is the most consumed vegetable worldwide with the potential for diverse ecological adaptation. However, increasing salinization and changing climatic conditions are posing serious threats to the growth, yield, and quality of okra. Therefore, to mitigate increasing soil salinization and ensure sustainable okra production under rapidly changing climatic conditions, evaluation of new okra germplasm to develop salt tolerant cultivars is direly needed. The present study was designed to evaluate the genetic resources of okra genotypes for salt tolerance at growth and reproductive phases. Based on mophological and physio-biochemical responses of plants under stress condition, genotypes were divided into salt tolerant and succeptible groups. The experiment was comprised of 100 okra genotypes and each genotype was grown under control conditions and 6.5 dS m-1 NaCl concentration in a pot having 10 kg capacity. The experiment was conducted in a completely randomized design and each treatment was replicated three times. The results showed vast genetic variability among the evaluated okra germplasm traits like days to emergence, pod length, pod diameter, plant height, stem girth, and other yield-related parameters. Correlation analysis showed a highly significant positive association among the number of leaves at first flower and plant height at first flower.Likewise, pod weight also revealed a highly significant positive relationship for pod weight plant-1, pod length, and K+: Na+. Principal Component Analysis (PCA) revealed that out of 16 principal components (PCs), five components showed more than one eigenvalue and the first six PCs contributed 67.2% of the variation. Bi-plot analysis illustrated that genotypes 95, 111, 133, 99, and 128, under salt stress conditions, exhibited both high yield per plant and salt-tolerant behavior in other yield-related traits. On the basis of all studied traits, a salt susceptible group and a salt-tolerant group were formed. The salt tolerant group comprised of 97, 68, 95, 114, 64, 99, 111, 133, 128, and 109 genotypes, whereas, the salt susceptible group contained 137, 139, 130, 94, and 125 genotypes. Salt-tolerant okra genotypes were suggested to be used in further breeding programs aimed to develop salt tolerance in okra. These insights will empower precision breeding, underscore the importance of genetic diversity, and bear the potential to address the challenges of salt-affected soils while promoting broader agricultural resilience, economic prosperity, and food security.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Abelmoschus Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: Pakistán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Abelmoschus Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: Pakistán
...