Detecting Abnormality of Battery Lifetime from First-Cycle Data Using Few-Shot Learning.
Adv Sci (Weinh)
; 11(6): e2305315, 2024 Feb.
Article
en En
| MEDLINE
| ID: mdl-38081795
The service life of large battery packs can be significantly influenced by only one or two abnormal cells with faster aging rates. However, the early-stage identification of lifetime abnormality is challenging due to the low abnormal rate and imperceptible initial performance deviations. This work proposes a lifetime abnormality detection method for batteries based on few-shot learning and using only the first-cycle aging data. Verified with the largest known dataset with 215 commercial lithium-ion batteries, the method can identify all abnormal batteries, with a false alarm rate of only 3.8%. It is also found that any capacity and resistance-based approach can easily fail to screen out a large proportion of the abnormal batteries, which should be given enough attention. This work highlights the opportunities to diagnose lifetime abnormalities via "big data" analysis, without requiring additional experimental effort or battery sensors, thereby leading to extended battery life, increased cost-benefit, and improved environmental friendliness.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Adv Sci (Weinh)
Año:
2024
Tipo del documento:
Article
País de afiliación:
China