Your browser doesn't support javascript.
loading
Slc26a1 is not essential for spermatogenesis and male fertility in mice.
Meng, Zhixiang; Qiao, Yu; Xue, Jiajia; Wu, Tiantian; Gao, Wenxin; Huang, Xiaoyan; Lv, Jinxing; Liu, Mingxi; Shen, Cong.
Afiliación
  • Meng Z; Dushu Lake Hospital Affiliated to Soochow University, Center for Reproduction, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, China.
  • Qiao Y; The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Center for Reproduction, Huai'an, Jiang Su, China.
  • Xue J; Dushu Lake Hospital Affiliated to Soochow University, Center for Reproduction, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, China.
  • Wu T; Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, Jiangsu, China.
  • Gao W; Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, Jiangsu, China.
  • Huang X; Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, Jiangsu, China.
  • Lv J; Dushu Lake Hospital Affiliated to Soochow University, Center for Reproduction, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, China.
  • Liu M; State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Jiangsu, China.
  • Shen C; The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, Jiangsu, China.
PeerJ ; 11: e16558, 2023.
Article en En | MEDLINE | ID: mdl-38111663
ABSTRACT
Thousands of genes are expressed in the testis of mice. However, the details about their roles during spermatogenesis have not been well-clarified for most genes. The purpose of this study was to examine the effect of Slc26a1 deficiency on mouse spermatogenesis and male fertility. Slc26a1-knockout (KO) mice were generated using CRISPR/Cas9 technology on C57BL/6J background. We found no obvious differences between Slc26a1-KO and Slc26a1-WT mice in fertility tests, testicular weight, sperm concentrations, or morphology. Histological analysis found that Slc26a1-KO mouse testes had normal germ cell types and mature sperm. These findings indicated that Slc26a1 was dispensable for male fertility in mice. Our results may save time and resources by allowing other researchers to focus on genes that are more meaningful for fertility studies. We also found that mRNAs of two Slc26a family members (Slc26a5 and Slc26a11) were expressed on higher mean levels in Slc26a1-KO total mouse testes, compared to Slc26a1-WT mice. This effect was not found in mouse GC-1 and GC-2 germ cell lines with the Slc26a1 gene transiently knocked down. This result may indicate that a gene compensation phenomenon was present in the testes of Slc26a1-KO mice.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Semen / Antiportadores / Fertilidad / Transportadores de Sulfato Límite: Animals Idioma: En Revista: PeerJ Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Semen / Antiportadores / Fertilidad / Transportadores de Sulfato Límite: Animals Idioma: En Revista: PeerJ Año: 2023 Tipo del documento: Article País de afiliación: China
...