Your browser doesn't support javascript.
loading
Moiré synaptic transistor with room-temperature neuromorphic functionality.
Yan, Xiaodong; Zheng, Zhiren; Sangwan, Vinod K; Qian, Justin H; Wang, Xueqiao; Liu, Stephanie E; Watanabe, Kenji; Taniguchi, Takashi; Xu, Su-Yang; Jarillo-Herrero, Pablo; Ma, Qiong; Hersam, Mark C.
Afiliación
  • Yan X; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
  • Zheng Z; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Sangwan VK; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
  • Qian JH; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
  • Wang X; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Liu SE; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
  • Watanabe K; Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan.
  • Taniguchi T; International Center for Material Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan.
  • Xu SY; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
  • Jarillo-Herrero P; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA. pjarillo@mit.edu.
  • Ma Q; Department of Physics, Boston College, Chestnut Hill, MA, USA. qiong.ma@bc.edu.
  • Hersam MC; CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Ontario, Canada. qiong.ma@bc.edu.
Nature ; 624(7992): 551-556, 2023 Dec.
Article en En | MEDLINE | ID: mdl-38123805
ABSTRACT
Moiré quantum materials host exotic electronic phenomena through enhanced internal Coulomb interactions in twisted two-dimensional heterostructures1-4. When combined with the exceptionally high electrostatic control in atomically thin materials5-8, moiré heterostructures have the potential to enable next-generation electronic devices with unprecedented functionality. However, despite extensive exploration, moiré electronic phenomena have thus far been limited to impractically low cryogenic temperatures9-14, thus precluding real-world applications of moiré quantum materials. Here we report the experimental realization and room-temperature operation of a low-power (20 pW) moiré synaptic transistor based on an asymmetric bilayer graphene/hexagonal boron nitride moiré heterostructure. The asymmetric moiré potential gives rise to robust electronic ratchet states, which enable hysteretic, non-volatile injection of charge carriers that control the conductance of the device. The asymmetric gating in dual-gated moiré heterostructures realizes diverse biorealistic neuromorphic functionalities, such as reconfigurable synaptic responses, spatiotemporal-based tempotrons and Bienenstock-Cooper-Munro input-specific adaptation. In this manner, the moiré synaptic transistor enables efficient compute-in-memory designs and edge hardware accelerators for artificial intelligence and machine learning.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos
...