Your browser doesn't support javascript.
loading
Regulation of Cellular Signaling with an Aptamer Inhibitor to Impede Cancer Metastasis.
Wei, Yurong; Long, Shiyi; Zhao, Min; Zhao, Jingfang; Zhang, Yun; He, Wang; Xiang, Limin; Tan, Jie; Ye, Mao; Tan, Weihong; Yang, Yanbing; Yuan, Quan.
Afiliación
  • Wei Y; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China.
  • Long S; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China.
  • Zhao M; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China.
  • Zhao J; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China.
  • Zhang Y; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China.
  • He W; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China.
  • Xiang L; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China.
  • Tan J; Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
  • Ye M; Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
  • Tan W; Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
  • Yang Y; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China.
  • Yuan Q; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China.
J Am Chem Soc ; 146(1): 319-329, 2024 01 10.
Article en En | MEDLINE | ID: mdl-38129955
ABSTRACT
Tumor invasion and metastasis are the main causes of tumor progression and are the leading causes of death among cancer patients. In the present study, we propose a strategy to regulate cellular signaling with a tumor metastasis-relevant cytoskeleton-associated protein 4 (CKAP4) specific aptamer for the achievement of tumor metastasis inhibition. The designed aptamer could specifically bind to CKAP4 in the cell membranes and cytoplasm to block the internalization and recycling of α5ß1 integrin, resulting in the disruption of the fibronectin-dependent cell adhesion and the weakening of the cell traction force. Moreover, the aptamer is able to impede the interaction between CKAP4 and Dickkopf1 (DKK1) to further block the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, which subsequently reduces AKT phosphorylation and inhibits the reorganization of the actin cytoskeleton in cell migration. The synergetic function of the designed aptamer in inhibiting cancer cell adhesion and blocking the PI3K signaling pathway enables efficient tumor cell metastasis suppression. The aptamer with specific targeting ability in regulating cellular signaling paves the way for cancer treatment and further provides a guiding ideology for inhibiting tumor metastasis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Proto-Oncogénicas c-akt / Neoplasias Límite: Humans Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Proto-Oncogénicas c-akt / Neoplasias Límite: Humans Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article
...