Your browser doesn't support javascript.
loading
On the mechanical response of graphene-capped copper nanoparticles.
Olguín-Orellana, Gabriel J; de la Rosa Abad, Juan A; Camarada, María B; Mejía-Rosales, Sergio J; Alzate-Morales, Jans; Mariscal, Marcelo M.
Afiliación
  • Olguín-Orellana GJ; Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, Talca, Chile.
  • de la Rosa Abad JA; INFIQC, CONICET, Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina. marcelo.mariscal@unc.edu.ar.
  • Camarada MB; Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany.
  • Mejía-Rosales SJ; Centro de Investigación en Ciencias Físico-Matemáticas (CICFIM), Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico.
  • Alzate-Morales J; Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, Talca, Chile.
  • Mariscal MM; INFIQC, CONICET, Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina. marcelo.mariscal@unc.edu.ar.
Phys Chem Chem Phys ; 26(3): 2260-2268, 2024 Jan 17.
Article en En | MEDLINE | ID: mdl-38165403
ABSTRACT
In this study, we investigated the mechanical behavior of pristine copper (Cu) nanoparticles (NPs) and Cu@graphene (Cu@G) hybrid NPs using molecular dynamics simulations. The longitudinal engineering strain was calculated as a measure of compression until reaching 25% of the initial size of the NPs. The stress-strain curves revealed the elastic-to-plastic transition in the Cu NPs at a longitudinal strain of 3.57% with a yield strength of 6.15 GPa. On the other hand, the Cu@G NPs exhibited a maximum average load point at a longitudinal strain of 6.81% with a yield strength of 8.26 GPa. The hybrid Cu@G NPs showed increased strength and resistance to plastic deformation compared to the pure Cu NPs, while the calculation of the elastic modulus indicated a higher load resistance provided by the graphene coverage for the Cu@G NPs. Furthermore, the analysis of atomic configurations, dislocations, and stress distribution demonstrated that the graphene flakes play a crucial role in preventing dislocation events and faceting in the Cu@G NPs by acting as a shock absorber, distributing the applied force on themselves, and producing a more homogeneous stress distribution on the Cu NPs; additionally, they prevent the movement of Cu atoms, reducing the occurrence of dislocations and surface faceting, thanks to their supportive effect. Overall, our findings highlight the potential of hybrid nanomaterials, such as Cu@G, for enhancing the mechanical properties of metallic NPs, which could have significant implications for the development of advanced nanomaterials with improved performance in a variety of applications.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: PCCP. Phys. chem. chem. phys. (Print) / PCCP. Physical chemistry chemical physics (Print) / Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Chile

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: PCCP. Phys. chem. chem. phys. (Print) / PCCP. Physical chemistry chemical physics (Print) / Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Chile
...