Your browser doesn't support javascript.
loading
The zinc finger protein DHHC09 S-acylates the kinase STRK1 to regulate H2O2 homeostasis and promote salt tolerance in rice.
Tian, Ye; Zeng, Hui; Wu, Ji-Cai; Dai, Gao-Xing; Zheng, He-Ping; Liu, Cong; Wang, Yan; Zhou, Zheng-Kun; Tang, Dong-Ying; Deng, Guo-Fu; Tang, Wen-Bang; Liu, Xuan-Ming; Lin, Jian-Zhong.
Afiliación
  • Tian Y; Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China.
  • Zeng H; Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China.
  • Wu JC; Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China.
  • Dai GX; Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
  • Zheng HP; Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China.
  • Liu C; Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China.
  • Wang Y; National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China.
  • Zhou ZK; Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China.
  • Tang DY; Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China.
  • Deng GF; Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China.
  • Tang WB; National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China.
  • Liu XM; Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
  • Lin JZ; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
Plant Cell ; 36(4): 919-940, 2024 Mar 29.
Article en En | MEDLINE | ID: mdl-38180963
ABSTRACT
Soil salinity results in oxidative stress and heavy losses to crop production. The S-acylated protein SALT TOLERANCE RECEPTOR-LIKE CYTOPLASMIC KINASE 1 (STRK1) phosphorylates and activates CATALASE C (CatC) to improve rice (Oryza sativa L.) salt tolerance, but the molecular mechanism underlying its S-acylation involved in salt signal transduction awaits elucidation. Here, we show that the DHHC-type zinc finger protein DHHC09 S-acylates STRK1 at Cys5, Cys10, and Cys14 and promotes salt and oxidative stress tolerance by enhancing rice H2O2-scavenging capacity. This modification determines STRK1 targeting to the plasma membrane or lipid nanodomains and is required for its function. DHHC09 promotes salt signaling from STRK1 to CatC via transphosphorylation, and its deficiency impairs salt signal transduction. Our findings demonstrate that DHHC09 S-acylates and anchors STRK1 to the plasma membrane to promote salt signaling from STRK1 to CatC, thereby regulating H2O2 homeostasis and improving salt stress tolerance in rice. Moreover, overexpression of DHHC09 in rice mitigates grain yield loss under salt stress. Together, these results shed light on the mechanism underlying the role of S-acylation in RLK/RLCK-mediated salt signal transduction and provide a strategy for breeding highly salt-tolerant rice.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oryza / Tolerancia a la Sal Idioma: En Revista: Plant Cell Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oryza / Tolerancia a la Sal Idioma: En Revista: Plant Cell Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: China
...