Your browser doesn't support javascript.
loading
Whole-genome long-read sequencing downsampling and its effect on variant-calling precision and recall.
Harvey, William T; Ebert, Peter; Ebler, Jana; Audano, Peter A; Munson, Katherine M; Hoekzema, Kendra; Porubsky, David; Beck, Christine R; Marschall, Tobias; Garimella, Kiran; Eichler, Evan E.
Afiliación
  • Harvey WT; Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195-5065, USA.
  • Ebert P; Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany.
  • Ebler J; Core Unit Bioinformatics, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany.
  • Audano PA; Center for Digital Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany.
  • Munson KM; Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany.
  • Hoekzema K; Center for Digital Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany.
  • Porubsky D; The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA.
  • Beck CR; Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195-5065, USA.
  • Marschall T; Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195-5065, USA.
  • Garimella K; Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195-5065, USA.
  • Eichler EE; The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA.
Genome Res ; 33(12): 2029-2040, 2023 12 27.
Article en En | MEDLINE | ID: mdl-38190646
ABSTRACT
Advances in long-read sequencing (LRS) technologies continue to make whole-genome sequencing more complete, affordable, and accurate. LRS provides significant advantages over short-read sequencing approaches, including phased de novo genome assembly, access to previously excluded genomic regions, and discovery of more complex structural variants (SVs) associated with disease. Limitations remain with respect to cost, scalability, and platform-dependent read accuracy and the tradeoffs between sequence coverage and sensitivity of variant discovery are important experimental considerations for the application of LRS. We compare the genetic variant-calling precision and recall of Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) HiFi platforms over a range of sequence coverages. For read-based applications, LRS sensitivity begins to plateau around 12-fold coverage with a majority of variants called with reasonable accuracy (F1 score above 0.5), and both platforms perform well for SV detection. Genome assembly increases variant-calling precision and recall of SVs and indels in HiFi data sets with HiFi outperforming ONT in quality as measured by the F1 score of assembly-based variant call sets. While both technologies continue to evolve, our work offers guidance to design cost-effective experimental strategies that do not compromise on discovering novel biology.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genómica / Nanoporos Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genómica / Nanoporos Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos
...