Your browser doesn't support javascript.
loading
Analyzing Molecular Dynamics Trajectories Thermodynamically through Artificial Intelligence.
Liu, Xuyang; Xing, Jingya; Fu, Haohao; Shao, Xueguang; Cai, Wensheng.
Afiliación
  • Liu X; Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
  • Xing J; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
  • Fu H; Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
  • Shao X; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
  • Cai W; Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
J Chem Theory Comput ; 20(2): 665-676, 2024 Jan 23.
Article en En | MEDLINE | ID: mdl-38193858
ABSTRACT
Molecular dynamics simulations produce trajectories that correspond to vast amounts of structure when exploring biochemical processes. Extracting valuable information, e.g., important intermediate states and collective variables (CVs) that describe the major movement modes, from molecular trajectories to understand the underlying mechanisms of biological processes presents a significant challenge. To achieve this goal, we introduce a deep learning approach, coined DIKI (deep identification of key intermediates), to determine low-dimensional CVs distinguishing key intermediate conformations without a-priori assumptions. DIKI dynamically plans the distribution of latent space and groups together similar conformations within the same cluster. Moreover, by incorporating two user-defined parameters, namely, coarse focus knob and fine focus knob, to help identify conformations with low free energy and differentiate the subtle distinctions among these conformations, resolution-tunable clustering was achieved. Furthermore, the integration of DIKI with a path-finding algorithm contributes to the identification of crucial intermediates along the lowest free-energy pathway. We postulate that DIKI is a robust and flexible tool that can find widespread applications in the analysis of complex biochemical processes.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Simulación de Dinámica Molecular Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Theory Comput Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Simulación de Dinámica Molecular Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Theory Comput Año: 2024 Tipo del documento: Article País de afiliación: China
...