Your browser doesn't support javascript.
loading
Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care.
Young, Hamilton; He, Yuxin; Joo, Bryan; Ferguson, Sam; Demko, Amberlynn; Butterfield, Sarah K; Lowe, James; Mjema, Nathan F; Sheth, Vinit; Whitehead, Luke; Ruiz-Echevarria, Maria J; Wilhelm, Stefan.
Afiliación
  • Young H; Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.
  • He Y; Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.
  • Joo B; Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.
  • Ferguson S; Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.
  • Demko A; Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.
  • Butterfield SK; Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.
  • Lowe J; Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.
  • Mjema NF; Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.
  • Sheth V; Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.
  • Whitehead L; Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.
  • Ruiz-Echevarria MJ; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.
  • Wilhelm S; Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, United States.
Nano Lett ; 24(3): 920-928, 2024 Jan 24.
Article en En | MEDLINE | ID: mdl-38207109
ABSTRACT
Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed a custom-made, low-cost fluid mixer device constructed from a commercially available three-dimensional printer. We investigated how systematically changing aqueous and organic volumetric flow rate ratios determined liposome, polymer nanoparticle, and solid lipid nanoparticle sizes, size distributions, and payload encapsulation efficiencies. By manipulating inlet volumes, we synthesized organic nanoparticles with encapsulation efficiencies approaching 100% for RNA-based payloads. The synthesized organic nanoparticles were safe and effective at the cell culture level, as demonstrated by various assays. Such cost-effective synthesis approaches could potentially increase the accessibility to clinically relevant organic nanoparticle formulations for personalized nanomedicine applications at the point of care, especially in nonhospital and low-resource settings.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_financiamento_saude / 1_medicamentos_vacinas_tecnologias Asunto principal: Sistemas de Liberación de Medicamentos / Nanopartículas Tipo de estudio: Health_economic_evaluation Límite: Humans Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_financiamento_saude / 1_medicamentos_vacinas_tecnologias Asunto principal: Sistemas de Liberación de Medicamentos / Nanopartículas Tipo de estudio: Health_economic_evaluation Límite: Humans Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...