Your browser doesn't support javascript.
loading
Two-dimensional few-atom noble gas clusters in a graphene sandwich.
Längle, Manuel; Mizohata, Kenichiro; Mangler, Clemens; Trentino, Alberto; Mustonen, Kimmo; Åhlgren, E Harriet; Kotakoski, Jani.
Afiliación
  • Längle M; University of Vienna, Faculty of Physics, Vienna, Austria. manuel.laengle@univie.ac.at.
  • Mizohata K; University of Vienna, Vienna Doctoral School in Physics, Vienna, Austria. manuel.laengle@univie.ac.at.
  • Mangler C; University of Helsinki, Department of Physics, Helsinki, Finland.
  • Trentino A; University of Vienna, Faculty of Physics, Vienna, Austria.
  • Mustonen K; University of Vienna, Faculty of Physics, Vienna, Austria.
  • Åhlgren EH; University of Vienna, Vienna Doctoral School in Physics, Vienna, Austria.
  • Kotakoski J; University of Vienna, Faculty of Physics, Vienna, Austria.
Nat Mater ; 23(6): 762-767, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38212445
ABSTRACT
The van der Waals atomic solids of noble gases on metals at cryogenic temperatures were the first experimental examples of two-dimensional systems. Recently, such structures have also been created on surfaces under encapsulation by graphene, allowing studies at elevated temperatures through scanning tunnelling microscopy. However, for this technique, the encapsulation layer often obscures the arrangement of the noble gas atoms. Here we create Kr and Xe clusters in between two suspended graphene layers, and uncover their atomic structure through transmission electron microscopy. We show that small crystals (N < 9) arrange on the basis of the simple non-directional van der Waals interaction. Larger crystals show some deviations, possibly enabled by deformations in the encapsulating graphene lattice. We further discuss the dynamics of the clusters within the graphene sandwich, and show that although all the Xe clusters with up to N ≈ 100 remain solid, Kr clusters with already N ≈ 16 turn occasionally fluid under our experimental conditions (under a pressure of ~0.3 GPa). This study opens a way for the so-far unexplored frontier of encapsulated two-dimensional van der Waals solids with exciting possibilities for fundamental condensed-matter physics research and possible applications in quantum information technology.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Austria

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Austria
...