Your browser doesn't support javascript.
loading
Pushed to extremes: distinct effects of high temperature versus pressure on the structure of STEP.
Guerrero, Liliana; Ebrahim, Ali; Riley, Blake T; Kim, Minyoung; Huang, Qingqiu; Finke, Aaron D; Keedy, Daniel A.
Afiliación
  • Guerrero L; Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA.
  • Ebrahim A; PhD Program in Biochemistry, CUNY Graduate Center, New York, NY, 10016, USA.
  • Riley BT; Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA.
  • Kim M; Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA.
  • Huang Q; Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA.
  • Finke AD; Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
  • Keedy DA; Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY, 14853, USA.
Commun Biol ; 7(1): 59, 2024 01 12.
Article en En | MEDLINE | ID: mdl-38216663
ABSTRACT
Protein function hinges on small shifts of three-dimensional structure. Elevating temperature or pressure may provide experimentally accessible insights into such shifts, but the effects of these distinct perturbations on protein structures have not been compared in atomic detail. To quantitatively explore these two axes, we report the first pair of structures at physiological temperature versus. high pressure for the same protein, STEP (PTPN5). We show that these perturbations have distinct and surprising effects on protein volume, patterns of ordered solvent, and local backbone and side-chain conformations. This includes interactions between key catalytic loops only at physiological temperature, and a distinct conformational ensemble for another active-site loop only at high pressure. Strikingly, in torsional space, physiological temperature shifts STEP toward previously reported active-like states, while high pressure shifts it toward a previously uncharted region. Altogether, our work indicates that temperature and pressure are complementary, powerful, fundamental macromolecular perturbations.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Idioma: En Revista: Commun Biol Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Idioma: En Revista: Commun Biol Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...