Your browser doesn't support javascript.
loading
Comprehensive exploration of multi-modal and multi-branch imaging markers for autism diagnosis and interpretation: insights from an advanced deep learning model.
Gao, Jingjing; Xu, Yuhang; Li, Yanling; Lu, Fengmei; Wang, Zhengning.
Afiliación
  • Gao J; School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Xu Y; School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Li Y; School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China.
  • Lu F; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Wang Z; School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Cereb Cortex ; 34(2)2024 01 31.
Article en En | MEDLINE | ID: mdl-38220572
ABSTRACT
Autism spectrum disorder is a complex neurodevelopmental condition with diverse genetic and brain involvement. Despite magnetic resonance imaging advances, autism spectrum disorder diagnosis and understanding its neurogenetic factors remain challenging. We propose a dual-branch graph neural network that effectively extracts and fuses features from bimodalities, achieving 73.9% diagnostic accuracy. To explain the mechanism distinguishing autism spectrum disorder from healthy controls, we establish a perturbation model for brain imaging markers and perform a neuro-transcriptomic joint analysis using partial least squares regression and enrichment to identify potential genetic biomarkers. The perturbation model identifies brain imaging markers related to structural magnetic resonance imaging in the frontal, temporal, parietal, and occipital lobes, while functional magnetic resonance imaging markers primarily reside in the frontal, temporal, occipital lobes, and cerebellum. The neuro-transcriptomic joint analysis highlights genes associated with biological processes, such as "presynapse," "behavior," and "modulation of chemical synaptic transmission" in autism spectrum disorder's brain development. Different magnetic resonance imaging modalities offer complementary information for autism spectrum disorder diagnosis. Our dual-branch graph neural network achieves high accuracy and identifies abnormal brain regions and the neuro-transcriptomic analysis uncovers important genetic biomarkers. Overall, our study presents an effective approach for assisting in autism spectrum disorder diagnosis and identifying genetic biomarkers, showing potential for enhancing the diagnosis and treatment of this condition.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Trastorno Autístico / Trastorno del Espectro Autista / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Trastorno Autístico / Trastorno del Espectro Autista / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2024 Tipo del documento: Article País de afiliación: China
...